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(i)
ABSTRACT

Vihen this research was started the main objective was to construct hot
neutron star models and to investigate the detectability of these stars. Since then
there has arisen the possibility that some of the galactic x-ray sources recently
discovered might be neutron stars. Hence both cold and hot models were constructed
and their properties were investigated. For this purpose, equilibrium nuclear con-
figurations of dense matter with densities in the range 108 2P 1012 gm/ em® for
(a), zero temperature and (b), temperatures in the range 2 x 107 LT 10'0 0k
were studied. Equilibrium concentrations of sub-atomic particles with densities in
the range 10]25 p< 1017 gm/cm3 at zero temperature were also studied, and then
a number of different equations of state to be applied to a dense star were constructed.

In the temperature and density range considered, stability shifts to more
neutron=rich nuclei with increase of density, Nuclei of smaller Z become more
abundant and the abundances of nuclei near a peak tend to become comparable

am
to that of the peak nucleus, with/increase of temperature. Vthen T < 5x 107 ok,

n gm/cm3.

the transition from heavy nuclei to neutrons takes place at p~ 3 x 10
At higher temperatures this transition would occur at a lower density, The moleculer
weight per electron, pe , is rather insensitive fo temperciure changes, On the other
hand its variation with density is somewhat larger (pe ~ 2 forp~ 106 gm/cms,

while for p~ 3 x 10” gm/cm3 Fe ~ 3) At higher densitics ( p/‘}llols gm/cma)

neutrons become contaminated with other baryons, mesens and leptons.



(ii)
In "real" gas models the pressure is less than that for ideal gas models in

15 gm/cm3, but the situation is reversed for p > 10]5 gm/cm3.

the range lolzép <10
The relativistic limitation on the equation of state prevents the pressure from in-
creasing too rapidly. The properties of neutron stars depend primarily on the mass
and the interaction between the constituent particles, and the effects of hyperons
and of the relativistic limit are minor. The envelope of electrons and heavy ions
is important in some of the least massive neutron stars. The mass and radius of stable
neutron stars range from about 0.2-2 M and 25-5 km, respectively. The maximum
mass of a neutron star can be as large as 2 M . All the models constructed develop
a central singularity at a finite mass and radius, but all the stable models investigated
in this research do not show the Schwarzschild singularity, A small local maximum
above the Oppenheimer=Volkoff crushing point is observed. Red shifts are calculated
to be from about 1% (least massive models) to 30% (most massive models) which
indicates that general relativistic effects are not negligible even near the surface.
Surface properties, temperature effacts and cooling are studied for six models
of possible stable neutron stars, For this purpose the opacity is calculated by means
of Cox's opacity code. Model atmospheres cre constructed both for a pure iron and
a pure magnesium composition, It is found that the non-degencrate layers are only
a few meters thick and in no case exceed 1% of the stellar radius, When the surface
6~7 ok

the internal temperature is about 1079~ 9 0,

temperature is about 10
For a surface temperature of ~ 3 x 107 °K the internal energy and optical luminosity
are ~ 10°0 ergs and ~ 10° Lo, while for the lower surface temperature of ~ 2 x 104

OK these two values are ~ 1040 ergs and 1078 Lo. The cooling process is mainly



(iii)
neutrino emission when T > 107 °K but at lower temperatures than this it is
primarily optical radiation. The age of a neutron star of a given temperature
depends on its mass, interaction potential and surface composition, among which
the dependence on mass is the greatest, The cooling behavior is quite complicated.
As a consequence, the possible age of a detectable neutron star can be anywhere
from about 1 day to about 10 years, Low mass neutron stars would be almost
impossible to detect, but intermediate and large mass neutron stars located even
far away (~ 103 parsec) can keep sufficiently luminous long enough to allow their
detection by instruments above the earth's atmosphere, and it should not be too
difficult to observe them, were the sensitivity of present detectors increased by a

factor of, say, 100,

ACKNCA/LEDGMENTS

| wish to extend my deepest gratitude to Dr, A, G. V/. Cameron for accepting
me as his siudent, for his excellent, patient guidance in the supervision of my
doctoral research, for the enlightening discussions | have had with him, helpful
advice and constructive criticism, and for making the special arrangements which
enabied me to use extensively and cfficiently various facilities in the Goddard
Institute for Space Studies (especiaily the 7094 computer, its related machines such
as the punching machine, and the xcrox machine). Without his help, this research
would have taken indefinitely longer,

My deepest appreciation is also duc to Professor Henry M. Foley and other
faculty members of Columbia University whose assistance and counsel were in-

valuable in time of need. | am indebted to the University and NASA for financial
//



(iv)
support. | wish to thank my committce members for their special interest in my
work. | am grateful to Dr. H. Y. Chiu for the early part of my training in research
in this field, to Dr. Robert Jastrow for his hospitality and others in the staff of the
Goddard Institute for Space Studies (especially Dr. A. Levinc and Mrs. E. Silva)
for their kind cooperation. In addition, it is my pleasure to acknowledge with
thanks the effort of the following persons: Mr, T. Psaropulos, for his painstaking,
skillful drafting; Mr. B. Sacharoff, for making available the use of his integration
and interpolation subroutine which improved the accuracy of my numerical work
and for performing the calculation of Cox's opacity code; Dr. S. Kato for the inter-
esting discussion of convection; Miss C. Federschmid for the time~consuming labor
of typing my thesis; and Mrs. A, Bolton for her constant help with my problems as
a student.

| should also like to thank Dr. E. E. Salpeter and other scientists who par-
ticipated in the symposium on neutron stars and galactic x-ray sources held at the
Goddard Institute for Space Studics in New York on March 20, 1964, which was a
great stimulation and help to my werk. Finally, | wish o express my gratitude to

all of those whose encouragement meant a great deal in enabling me to continue.



INTRODUCTION

One of the major puzzles faced by people concerned with stellar structure
problems in the late 1920' to early 1930's was the determination of the mechanism
of energy generation processes within a star, The method commonly adopted in
those days was to make convenient arbitrary assumptions about the energy sources.
In 1932 Landau{!) proposed that some valuable insight might be obtained by first
investigating the equilibrium configuration of a cold body of given mass with no
energy generation. He argued that for a body of large mass, whose parts are kept
together by gravitational attraction, there exist two possible equilibrium states =
the electron-nuclear state and the ncutronic state. It was also pointed out that if
the mass is sufficiently large, the latter state would be more favorable. It was sug-
gested about that fime(z) that such a state of a neutronic configuration might be
physically realized in the form of a neutron star, or a neutron core, at the last stage
of the stellar evolution of a sufficiently massive star.

In 1933 Oppenheimer and Serber(3) estimated the possible minimum mass of
a stable neutron core. The first extensive work on the construction of models of

4

neutron stars was carried out by Oppenheimer and Volkoff," ' who used general
relativity in formulating the structure equations and assumed that the equation of
state is that of a simple non-interacting Fermi gas of neutrons. Their results showed
that the observable mass should have an upper limit of about 0.7 solar mass. Zwicky(s)
suggested that a neutron star is a possible remnant of a supernova explosion. The

problem of the behavior of a body with mass exceeding the maximum limit was first

investigated by Oppenheimer and Snyder(é) in 1939,
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From the time of these investigations until rather recently, the study of
neutron stars was somewhat neglected. The reason was that as a result of the
progress made in nuclear physics, the theory of stellar evolution and the study of
white dwarfs, it became generally believed that the end point of stellar evolution
was a white dwarf star rather than a neutron star, The maximum mass of white
dwarfs was calculated by Chondrasekhar(7) to be about 1.4 solar mass, larger than
the limit for neutron stars calculated by Oppenheimer and Volkoff.
In 1958 Wheeler(®) pointed out that the subject of ncutron stars would

pose problems both interesting and stimulating in the fields of general relativity,
gravitation theory and high energy physics. Since then the study of neutron stars
has revived. In the work of Wheeler et al ,(8) the properties of stellar configurations
at zero-temperature from the white dwarf region to neutron star region was investi-
gated, and a broad intermediate region where the configuration is unstable was
found. The first effort to construct neutron star modeis of a real gas was made by
Cameront®) in 1959, In his models, a mean nuclear potential constructed by Skyrmé'l 0
was used to take account of interaction forces among neutrons. The maximum ob-
servable mass of Cameron's models was about 2 solar masses. In 1960 Salpeter(] N
investigated various kinds of equation of state for dense matter by a semi-empirical
method and applied these to models of zero-temperature si'qrs,(] 2) Both Cameron
and Salpeter discussed the effect of hyperons but no quantitative calculations were
given. During the period of 1960-1962 a series of papers were published by

(13,14,15)

Ambartsumyan and Saakyan on superdense hyperon stars.
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This concludes a brief survey of the history of the study of neutron stars
and other dense stars before research for this thesis was undertaken.

In studying the previous work, | noticed that all the models were constructed
with zero-temperature and that the possible temperature effect of the surface layers
was not investigated, with the exception of an interesting discussion in Cameron’s
paper. In his pcper,(9) Cameron concluded that neutron stars are the probable end
products of supernova processes and that such a star would, after its formation, cool
off so rapidly that it would escape our observations. However, in an added note, he
made a reservation concerning this conclusion and pointed out that, if a hot non-
degencrate envelope is formed at the end of the evaporation stage when the gas at
the stellar surface no longer has enough internal energy to expand to infinity, such
an envelope might well retain a great deal of the internal heat of condensation
for appreciable periods of time,

I was particularly interested in this suggestion which Cameron mede. At
the time this research was first undertaken no investigation of "hot neutron stars"
with high-temperature, non-degencrate envelopes had yet been made, and it was
not known whether there would be any hope for observation, even if they should
exist, | thought that hot neutron star models might provide some insight into this
problem, and decided to construct such models in the hope of determining the
feasibility of directly observing these stars. Therefore, my objective when | started
this research was mainly to construct hot neutron star models with hot non-degenercte
outer layers and investigate their surface properties and the effect of these on

cooling and detectability.



However, since then, the status of neutron star problems has undergone a
considerable change because of the discovery of galactic x-ray sources and the
possible identification of these sources with neutron stars. The reccnt development
in this field is reviewed briefly below, In the summer of 1963, Saakyan's paper(lb)
was published where an improvement was applied to Cameron's models. Chiu(17)
discussed the over-all problem of neutron stars, both dynamic and static, made
rough estimates of temperature and cooling time, considered some observational
problems, and concluded that while neutron stars are not observable on the earth
they should be detectable above the earth's atmosphere owing to x-ray emission,

In recent years, it has been reportcd,(lsrwl 20)

through rocket flights in
outer space, that there exist x-ray sources outside the solar system. In December,
1963, Friedmon(zo) reported that two discrete galactic x-ray sources were detected,

7

one in the constellation Scorpio with the measured flux of 10™ ergs/cm2-sec over
the wave length range of 1.5 t0 8 /c-\> » and the other in the Crab Nebula with a
flux about 8 times weaker than the former, and further proposed that they might

be identified with neutron stars, Since then, interest in neutron stars appears to
have grown rapidly, and many papers on neutron stars and galactic x-ray sources
have been published (references 13(b), 19, 22, 23, 24, and 25). Some other alter-
native theories have also been proposed to explain the mechanism of these x-ray
emissions.(2]) The data on X-ray measuvrements are, however, too scarce at the
present time to allow us to draw any definite conclusions and there is still no means

of deciding against or in favor of some of these possibiliiies. The most recent ex~

20" T ) .
perimental doto("o ) seems to indicate that the x-ray source in the Crab Nebula
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is not a neutron star but there is a possibility that the Scorpius source is a neutren
star. | wish to emphosize that more detailed experimental data is quite badly
needed, that the models based upon logical foundations and constructed in this
research by straighiforward application of physical principles, which are
presented in detail in the following chapters, are consistent with all the infor-
mation on x-ray measurements so far available, and that there is a good possibility
that some of the galactic x=ray sources arc indeed neutron stars.

Due o the recently increasing interest in the field, my work has become
extended beyond the original modest plans, For instance, instead of using the
existing cold models for neutron cores, an over-all re-invesiigaiion and re-
construction of cold models has bzen undertaken before constructing hot models,
and model atmospheres with two possible surface compositions have been constructed
to take the possible diffusion effect into account.

Chepter | iniroduces the basic physics governing the internai structure of
neutron sicrs, Chapter 1l is devoied 1o the study of the equilibrium composition of
surface layers, Various possible equations of state have been investigated in
Chapter ili. In Chapter IV, models censtructed by others are introduced first, and
then models constiucted in this research are presented. The lasi chopier, V, is
devoted to the problem of hot neutron stars, including the construction of model
atmospheres, the study of surface propertics, the calculation of jotal energy content,
temperature, luminesity, cnd the investigaticn of the cooling behavior of varicus
models of different ages, and finally the problems of observation and deteciion,

This research is confined to static problems of neutron stcrs and other dense stars

under hydrostatic equilibrium. The stars are assumed to exhikit spherical symmetry with

no rotation throughout,



CHAPTER |

RELATIVISTIC EQUATIONS OF HYDROSTATIC EQUILIBRIUM

=1, PHYSICAL CONDITIONS IN STELLAR INTERICRS

In attacking the problems of the static structure of stars, there
are four basic differential equations which govern the conditions in

stellar interiors. These are generally expressed as:

4P -

2L = —p00 C:% (1-1)
% - b2 P OR) (1-2)
%{—i”': br* Q) eV (1-3)

dT _ 3 Kem)L,
d
d

=" Fac T3 [m_/()_( radiative) or (1-4)

33

=(‘——l;,-):;3: d&—g (convective)

&

The first two are called equations of hydrostatic equilibrium.
They result from the fact that for a star to be stable, cll the forces acting
on any part of the star must be in balance with each other. For a
spherical body subject to a central gravitational force, this force di-
rected inward must be balanced by the pressure force directed outward.
The gravitational force acting on a volume element &v is given by

p(r) Sl;\_&.. &v , where p(r) isthe density at r, G is the constant

r



of gravitation, r is the radial distance from the center to Sv, and
Mll is the mass inside a spherc of radius r. The pressure force on
Ov is = %TP 8v . Equating the two we obtain (1=1), (1-2) is just

a differential form of the definition of Mfl

M =f: 4ar2p(r)dr (1-2Y)

The third equation is necessary to fulfill the condition of
thermal equilibrium, that the total encrgy loss must be compensated
by the net energy generaiion. The net cnergy loss per unit time ccn be
characterized by the over-all luminosity or the energy flux through a
sphere of radius r'L’L [ by over-all, any type of energy loss (e.g.
neutrino energy loss, etc.,) is meant]. The third equation (1-3} is then
just the law of conservation of energy in differential form.

The two equations in (1-4) are related to the condition for the
energy transport, There are three means by which energy is transporied
within a star: conduction, convection and radiation. In most of the
stellar structure problems we encounter, either radiative transfer or con~
vective transfer is most important. The equations in (1-4) are applicable
to these problems. Here, dT/dr is the temperature gradiant, a is
Stefan's radiation constant, c¢ is the velocity of light, & is the opacity
of the matcrial or the moss absorption cocfficient usually expressed in

cm2/gm, and Y is the ratio of the specific heats Co/ Cye



In the problem of model construction of hot neutron stars,
radiation and electron conduction are more important than convection.
This point will be discussed in Chapter V.

The four differential equations just introduced contain five
variables P, M/L' Lﬂ, T and r. Cne might, therefore, think that if
one is chosen as the independent variable, the rest are determined by
the four equations, provided that suitable boundary conditions are
given. This is true if explicit relations are given through which p(r),
¢ and K can be eliminated. All of these quantities gencrally depend
on the composition, density and tempeiature, That is, they can be ex~

pressed in the form:

P = P(Pl 1, C) (]"50)
K =K(p, T, C) (1-5b)
e =¢(p,T,C) (1-5¢)

where composition is expressed symbolically by the letter C, The first
is the equation of state. The three arc called the ""gas characteristic
(26)

relations,”

The boundary condiiions are generally given by

l\/\,‘x =0, L/L =Q, P = PeT = T_ at r=0 (center) (1-6a)
M/t = M, LiL =L P=0,T =0 at r=R (surface) (1-6b)

where P and T are central pressure and temperaiure, M is the mass and

R is the radius of the star.



For neutron stars, white dwarfs, or any stellar configuration
of sufficiently high degeneracy and of no energy generation, the
situation is far simpler. In the original form presented above the
four differential equations are coupled together and it is necessary
to carry out the numerical integration of four equations simultaneous-
ly. However, if there is no energy generation, e in (1-3) is zero and
the third equation drops out. Moreover, for a sufficiently high
degeneracy, the temperature dependence of pressure drops out and
the equation of state takes the form:

P = P(p) for agiven composition . (1-5a%)
In this case, the hydrostatic and thermodynamic parts of the structure
equations are decoupled and the first two and the last two equations
in (1=1)=(1~4) can be treated separately.

In the core of a neutron star where the degeneracy is sufficient-
ly high, the conduction process is so efficient that the temperature
gradient dT/dr is practically zero and the last equation also drops out.
The conclusion is that the structure problems of neutron stars boil down
to the solution of the first two equations (1-1) and (1-2).

In the outermost part of the star where the density falls to the
non-degenerate region (density low compared with temperature), the
temperature effects also must be included in our hot neutron star models,

but, as our results in Chapter V reveal, such non-degenerate regions
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occur only at about a meter or so from the surface, while the typical
radius of a neutron star is about 10 kilometers, and in finding typical
physical quantities of interest to us (mass, radius, internal distribution
of matter, the maximum mass limit and many other general properties
which are not sensitive to temperature), our cold-body approximation
is perfectly valid; that is, the problem can be solved by integrating
the two hydrostatic equations (1=1) and (1-2) under suitable boundary
conditions and with the proper form of the equation of state (1-3a').

One correction to the above statement is necessary, That is,
the equations of hydrostatic equilibrium (1-1) and (1-2) are derived
from Newtonian mechanics. As it is to be fully demonstrated soon,
however, the general relativistic effects become quite important for
vltradense matter such as neutron stars. For instance, the deviation
from Newtonian mechanics is characterized by the factor GM/RCZ,
which, later, is identified with the gravitational red=shift of spectral
lines. This quantity is about 0,01 to 0.3 for neutron siars (Chapter V ),
while the value of the same quantity for the sun and for the companion
to Sirius (a typical white dwarf) is only 2,12 x 1076 and approximately
6 x 1072 respectively.

The conclusion is that for neutron star problems more general
expressions for hydrostatic equilibrium, based on the gencral theory of

relativity, must replace (1-1) and (1-2). The rest of this chapter is to
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be devoted to the derivation of such equations, their general properties
and other general relativistic parameters which are to play important

roles in the problem of neutron stars.

-2, RELATIVISTIC EQUATIONS OF HYDROSTATIC EQUILIBRIUM

a. General Discussion

What is mentioned above can be seen also from the fact that the
radius of a neutron star is comparable to the gravitational radius,

RG = ZGM/cz. In such a case, it is not permissible to neglect the
effects of general relativity and the calculations must be carried out
with Einstein's gravitational equations.

The solution of Einstein's equations for the spherically symmetric
distribution of matter is relatively simple and a complete solution of such
problems for the static case was obtained by K. Schwarzschild as early
as 1916,

The most general static line element exhibiting spherical
symmeiry is expressed as (p. 239, 24! of reference 27)

d32 = - eMr)c!r2 - r2 dG2 - r2 sin29 dgp‘? + e’ (r)dtz (1-7)

If the matter supports no transverse stresses and if the macroscopic energy
density ¢ and the pressure P are measured in proper coordinates, the follow=-

ing expressions are obtained as the gencral relativistic equations of

hydrostatic equilibrium:
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duQr) _ 2
by AT E(P) I

(1-8)
dP _ _ (P+ €(P)) 3
- STEE (ATPP+ U] o

In (1-8) and (1~9) a system of units is adopted which makes G =¢ =1,
where G is the gravitational constant, ¢ is the velocity of light, u(r)

is a quantity defined by
UUU=_5/1(1— e”) (1-10)

which characterizes the quantity of matter enclosed within a sphere of
radius r, and iis value at r = R is to be later identified with the mass
of the star as perceived by a distant observer. The derivation of (1-8)
and (1-9) is to be given below before going into further details.

b. A Summary of Some Fundamental Principles of the Theory of General
Relativity

As in the case of many problems involving general relativity, we

can start with(ﬂ)

OlSl-': g‘p)) O{JCMOLDC)) (]_“)

ad WP W o Wy p gV
sTT =R 7 RETTATT L,

where the first expression is the most general form of an interval in

Riemannian space and the second is the field equation of Cinstein,



gw is the fundamental metrical tensor, ™Y the energy~
momentum tensor, R*Y  the contracted Riemann-Christoffel tensor,
R the invariant obtained by further contraction of this tensor, and A
is the cosmological constant. Here again, G and c arc set equal
to 1,

The fundamental equation of mechanics in the language of

general relativity is then given by
Wy Ty d) e
(U0 = 50+ {a0, )y T w237 =0

where

13

(1-13)

U”)»é}:'{l[ Coték{a—%—“}ui— EESYN 93/’“)} (1-14)

S5x” XK x>

The contracted Riemann=Christoffel tensor is defined by

Ryup=(18,d3{d Y431y ot} {at,63 +§)—Cﬂ{m,3}
- 254 {W, 8}

In proper coordinates the energy momentum tensor is written ast??)

o o o

e Pa Py Pz O
(o] o [s) (o]
P P
Yx }44 PYZ 0
(o] (o] Q
sz sz Pzz 0
2
0 0 0 c?p_

(1-15)

(1-16)
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The transformation from the proper coordinates (xol P %5

3 . . ..
X, s x°4), the coordinates so chosen that the matter in question is at

rest with respect to the spatial axes, to other arbitrary coordinate
systems (x}, x2, x3, x4) is provided by the relation

TIM): >k Q.X_y B
'3_‘)(:_‘;’)‘ gxﬁ 0 (1-17)

where the subscript zero denotes the quantities in proper coordinates.
Important simplifications are possible in the case of a perfect

fluid, that is, for matter in which there are no transverse stresses and

no mass motions. In that case it is known(27) that (1-16) reduces to a

simpler form

-p 0 0 0
1% -
° 0 =-P 0 0 (1-18)
0 0 =-P 0
0 0 0 €

where P is the pressure and ¢ is the energy density as measured by
a local observer.
Using the definition of proper coordinates, with the help of

(1-13), equation (1-17) reduces to

B,V
TH = (e +p)dx dX” _ gU“)P

dS dS (1-19)
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The most general expression of a static line element in spherical
symmetry is given by (1-7), Substituting the three-index symbols
{pv, b} of (1-14) (evaluated for the line element (1-7)) into the ex~

pression for Rp

field equation (1~12), we are led to

gTP=-8TT'=€ (R ) |

- T2
4 (1-20q)

in (1-15), and substituting these va into the Einstein's

8’ITP= -8 Tﬁ"‘ g"TT3

Y x)ﬂ (v-2)7
e (¥ 4_ + + 2 }

(1-20c)
ge=gTT =e( ) b
as the only non-vanishing terms of the energy-momentum tensor, where
the primes denote differentiation with respect to r. The cosmological
constant /A has been dropped in above derivations, because it is
negligible in most stellar problems including neutron stars. From the

above three relations, the following is casily deduced:

- <6+P)% =0 (1-21)

which is the relativistic analogue of the Newtonian expression (1=1), or

&_E + _%i.(ff = 0 where ( is the Newionian potential.
r r

c. Schwarzschild's Exterior Solution

In the empty space surrounding a spherical distribution of matter,



all components TBG should be zero. Applying this condition to
(1-20a) and (1-20c), we obtain
AN o= - (1-22)

Combining this with (1-20b), we are led to

1
R ..__2rV =0 (1-23)
Integrating this twice, we obtain
v b
e =a + I"_ (]"24)

where a and b cre constants of integration.

Noting that the line element (1-7) must approach the special
relativity form as r goes to infinity, ds2 - dr? - ¢2 da? - 2
sin 29 dq>2 + dtz, and that eA = oe’= 1in that case, a is set

equal to 1. If further, the constant b is set equal to ~ 2 M, we have

eV(r) = e.-l\(r) =1-2M/r forr > R (1-25)

Substituting (1-25) into {1~7) we obtain

2
d52 = - dr -r
(1-2i)
r

2M
2d9% - 2sin Zed 92 +(1 - =92 (1-26)

The constant M appearing in the above expression will soon be shown
to be the total Newtonian mass of the star as calculated by a distant

observer (Section 1-4b).
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d. Schwarzschild's Interior Solution

Under the condition that the pressure be zero at the surface
and that the energy density ¢ be constant in the interior, (1-20c)

can be infegrated to give a result:

(1-27)

where the constant of integration has been set equal to zero to remove
singularities at the origin.

To obtain a solution for v, we first integrate (1-21), eliminate
¢ and P through (2-20a) and (2-20c), eliminate A through (1-27),

and obtain

v/2,2 v - 2 __3
e (—;—- + = r—z-) const where r 37 .
o
o
After integration, we get
&2 = p-B(1- r2/r02)% (1-28)

where A and B are constants of integration.
Making the pressure zero at the boundary r =R, and ihe interior
solution fit smoothly at r=R to the exterior solution {obtained in

sub-section c), the constants are evaluated, The results are
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1
A= -g(l - rlz/roz)‘ ,B= % where r_ and r; are
(1-29)
H 2 = -—3—-—. = ﬂ 3
defined by ro = R ' M 3 er]
With these values for the constants, the interior line element takes
the form2 ) N
2 ~
stz= %P n B dP
(- re/nt) l (1-30)
(_ N*\2T2, 4
+CA-B (1= 20 Pyt
0
in order for the solution to be real, the condiiions that
2 2 2
fl,</lo &'l jZ' <___‘?1___ st M < /7' (1-31)

g €

must be satisfied |

e, Derivation of the Relativistic Equations of Hydrostatic Equilibrium

By the use of the equation of state ¢ =¢ (P), equation (1-21)

may be integrated:
PC1)

))(}T):)) - _._2.._0‘._P____. -
(R) Ny (1-32)

Taking the expcnential of each term,

160/

¥ 0_ EQ(R@?[“J; zdP/{P-%E(P)}j (-39
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V(R)

v(n)

The constant e is determined by making e continuous

across the boundary. Then, from (1-25), we get eVR) =) - 2M/R,

From the definition of u(r) as expressed in (1-10), we have

e">\= 1 -2u/r (1-34)

Then (1-20c) becomes

dud(:) =4ue (P)r2

In (1-20a), e-)‘ and V' are eliminated through (1-34) and

(1-21), and it becomes:

dP _~(P+e (P (433

P+ vl
dr r(r = 2u)

The last two equations represent the relativistic analogue of the hydro-

static equations, which were already written down in (1-3) and (1=9).

[-3 UNITS TO BE USED IN RELATIVISTIC CALCULATIONS

In all the discussions above and hereafter, the system of units

which makes G =c =1 s to be used, unless otherwise indicated, so
that energy and mass will have the same dimensionality. Furthermore,
it is convenient if a system of units be used which gives the same dimen-
sional ity to both masses and distances. In this case H =1 also.

In addition, in actual calculations the numbers we are to deal

with become enormously large (M ~ 1033 om, R ~l1 0® cm, etc.) if
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c.g.S. units are used. Noting that the mass and radius of a neutron
star are of order of magnitude of about 1 solar mass and 10 kilometers,
numerical calculations are much simplified by the adoption of a system
of units such that the distance, mass, pressure and density in c.g.s.
units are obtained by muliiplying the respective quantities obtained
in this system of units R, M, Pand p by conversion factors R,, M,
Por and p_ as defined by

3/2
R, =Q./27 h ) < =1.37x106 cm =13.7 km ~1079 R

"Mt
n /GMn
M, =R, ¢%/G =1.85 x 10%4

®

gm =9.29 M,

P, =M * e’ /321263) 4n = K 43 =645 x 1036 dynes/cm?

-3
Po = (K ,-/c2)4ﬂ= Po/c,'2=7.15x10159m/cm3 (1-35)

where
35

45
k=M “e%/32124% = 512x10

M s the mass of a neutron, i =h/2M, h is Plank’s constant.

-4, GENERALRELATIVISTIC CG:UANTITIES

There are several characteristic quantities of gencral relativity
which are important in the problem of neutron stars. Some of these are

introduced below,
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a. Physical Meaning of the Metric Tensor 9y v

g}1 y Wos originally introduced as the components of the metric
tensor in the most general expression of an interval in Riemannian
space, as d32 = gpv dx” dx’ (1-1 1), lts importance is, however,
multiplied through the principle of cquivalence which connects the
metric and gravitotion so that the metric for a flat space-time in the
presence of any permanent gravitational field corresponds to the metric
for a curved space-time without a gravitational field. Because of this,
it is possible to regard Sy cither as the gomponents of the metric
tensor in the form of (1-11) or as the gravitational potentials through
the relation (1-12) in the Einstein theory of gravitation. A close

GM
r

connection between %y and ¢ =- » the Newtonian gravitational

potential, is seen below.
The radial component of the metric and the time component,

grr(r) ond g 44(r) for a spherically symmetrical space are, from (1-7)
and (1-11),

AG) v ()

gn,(!‘) = - e and 944(r) = g

In an empty space outside a spherical distribution, they take the form

g, () == (1= 20/ 3

1 é, for r > R (1-3¢)
944(0) = (1 - 2W/r) == ERORE
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as seen from equation (1-26). The radial component in the interior is

found from (1-34) to be
9”.(") == - -2—:,1—('2)-] for r < R (1-37)

The time metric in the interior is obtained by applying the requirement

that the chemical potential be constant under the statistical equilibrium,
For a cold-body the chemical potential

is simply the Fermi energy (including the rest mass). In the presence of

a strong gravitational field, the energy, corresponding to the fourth

component of the energy-momentum tensor, must be multiplied by a

proper function of the fourth component of the metric to take care of the

gravitational effect. We have namely the relation

/9040 M2+ 0 = /g Rm 2+ P2R)" = const
for dense matter of spherical symmetry, where M) is the mass and
Py is the Fermi momentum of one of the particles, k, which
constitutc the body of interest and R is the radius of this body. For a
pure neutron gas, the particles k are only reutrons, n. In this case,

the above relation is simplificd to

944(!') =1 - -Z—A.A_) (cosh2 Ir_lz(r_) )-]

R for r <R (1-38)

in the inierior of a neutron star, where th= 4 sinh—] (P,,/MnC). In

the above derivation, the relation P,(?) =0 was used.
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The physical meaning of these expressions may become somewhat
clearer if we note that in the system of units we are employing where
G =1 and ¢ =1, the Newtonian potential is just ==~ -’:.A-, and outside

the star, we see from (1~36) that the radial component g 44(r) and the

time metric g 4 4(r) become

(1-39)

g,,(r)=-<1+21fo"% o

9440)= 1+2y9

The last equation in (1-39) is identical with the relation between the

time metric and Newtonian gravitational potential in a weak gravitation-
al field (e.g. p. 199 of refercnce 27). In the absence of a gravitational
field, the corresponding space~-time is “flat", and 9=~ 1 and

944 = 1, =0, The above argument points out that the quantity ~2y=2M/r,
or 2C5M/r<.~r.2 in ordinary unils, gives a measure of the deviation of the
components of a metric tensor from their values in flat space~time, or the
degree of curvature, which in turn gives the sirength of the gravitational
field. From the above expression, we sce that the greater the mass for a
fixed radius, in other words, the denser the body, the greaier the deviation
of 944 from unity. When finally 2M/R becomes 1, 944 =0 and Gy = -
It was mentioned earlier that the quantity GM/ Re? is about 0.1 for a
typical neutron star; in this case g 44 isabout 0.8 at the surface of the

star and the 205 deviation is certainly not to be neglected. In the interior
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the deviation is larger still and this is why the problem of neutron
stars must be treated by the theory of general relativity.
In a gravitational field actual distance and time intervals
arc determined from the same quantities measured in proper coordi-
nates, In a sphericolly symmetrical body the length contraction
occurs only radially and the actual radial distance and time inter-

vals are determined by -1

ly
d/l{,=\/_g_ = 87\(")/2 drr=(1- 200D /7) dre
nr

(1-40)

ond

AT =g, dt = ¢

YO/ 2 mn

(1-41)
The corresponding proper volume element is
4
AV, = AT AR =T (1= 2UCYR) R i

For instance, the actual stellar radius R, is found from

R
R, = S V-9, U (1-43)

o

and the total number of baryons in a spherical body of a baryon gas is

found from

R
N = fmrj =G M) 2 et
0
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where n(r) = L nk(r) is the total baryon number density at r.
k
In the above expressions Ry, the proper radius, is the actual radius
of the siar while R is defined as the radial distance from the center

of the star fo the boundary where the density become

zero, which is the radius of a star as seen by a distant observer.

b. Gravitational Mass and Proper Mass

Equation (1-8) can be expressed as u(R) =Jo' R 4 qe (P)r2 dr;
comparing this with a definition of the total Newtonian mass of a star
M = _I'OR 4ap 2 dr, we see that u(R) in general relativity corre-
sponds to the total Newionian mass of the star as calculated by a
distant observer. It includes not only the sum of the rest masses of the
constituent particles, but also the Fermi energies of the constituent
particles and the gravitational effcct. This is clear from the fact that
we are integrating over total energy density e (P), rather than the sum
of matter densities P = E oM.

Noting that the interior solution and the exterior solution of
the field equations for spherical symmetry must be joined smoothly,

equation (1-10) at the boundary r =R is shown to become

- AMR)

uR) = AR(1 -e ) = 20 - -2MR)) = M

through the help of equation (1-25). That is, the so far undefined
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constant M introduced in (1-25) is indced identified with the
total Newtonian mass of the star as measured by a distant observer.

The mass M or u(R) obtained in this way is called the
gravitational mass or the observable mass because it is the mass
determined from its gravitational effect on a distant test particle,
which is as the mass actually observed by a distant observer, for instance,
the mass of a neutron star as seen from the earth.

Proper mass is defined as the mass measured by a local ob=
server. [t is obtained by integrating the proper matter density

P n M, over the proper volume of the star dv =47e M2 r2 dr,

In differential form it is written as

|
/5
M 2

This corresponds to the mass the star would have if its particles were

dispersed to infinity by the gravitational binding energy, in mass units.

c. The Gravitational Binding Energy

The gravitational binding encrgy Mg in mass units is the
difference between the proper mess and gravitational mass, and may

be obtained by integrating the following differeniial equation together

with (1-9):

73
dMs(ﬂ7_4_1T {(n :"LU(J QA(P)'F(%(M&

Pm(P) is matter density while ¢ (P) is energy density,




We know that the most stable configuration is the one with
minimum total mass, and from that we sce that no stable stellar con=
figuration (in the form of a star of finite dimensions)ccm exist if the
gravitational mass is greater than the proper mess. In that case, par-
ticles would be dispersed to infinity rather than being kept together

in the form of a star.

d. Schwarzschild Singularity

Examining the expression of a line element such as equation
(1-26), we note that for the solution to be real the following in-
equality must be fulfilled; R > 2M

or in ordinary units:

2GM
R > Rg = 5 (1-47)

The limiting radius Rg s called the "gravitational radius.”
When R=Rg, asingularity occurs. This is called the Schwarzschild

singularity, The Schwarzschild field, therefore, has o singular spherical

2GM

> besides a singularity of the origin which is

surface at r =

c
inherent in a Newtonian gravitational field also, Cn this surface, the
component g4y vanishes and Oy becomes infinite,

At least a part of this singularity appears to be attributed to

the choice of the coordinate system. For instance, if the line element
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is expressed in isofropic form as (cquation 82-14, p.205 of reference 27),

- M/2 /Z)Ldtz
ds ~—(i+—~)(d1+d’4+d$ )“" R M/ 12)2 (1-48)

the Schwarzschild singularity (a singularity other than that at the origin)
does not occur,

V/hen we use hydrostatic equations in the form (1=3) and (1-9),
we have fo be careful that the condition (1-47) be fulfilled always. For
a star of about one solar mass, the gravitational radius is about 2.6 km.
The radius of the sun is about 7 x 10° km and there is no danger of
violating the condition (1-47). For a typical neutron star the radius
can be less than about 10 km and for some of the models of densest

neutron stars it may be worthwhile to keep this limitation in mind.

e. Gravitational Red Shift

Cne of the most powerful experimental varifications of the
theory of general relativity was based upon the phenomenon known as
the "red shift," which is the shift of spectral lines toward lower frequen-
cy due to the difference between the stronger gravitational field at the
point where the light is emitted ond the weaker field where i is received,

The proper period is seen from (1-26) to be

l/?_
AT=({~- 2M (1-49)
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The wavelength A of light at the moment of emission at the surface
of astaris cd T, where c isthe velocity of light, while the wave-
length of the same light ray at the moment of arrival at the observer
on the earth will be N + 8\ = cdt, where &\ is the difference in
wavelength at those two moments, and dt is the coordinate period.
Taking the ratio of these and using (1-49), we obtain
XN
A dt
Qr, converting to ordinary units,
A aM - (R
A RCY [T CE

where M0 is the mass of the sun.

-l
(1= ) "~ 1+ K and 2t 050

N 47(M/Mo)
R (fm)

The shift is negligible in most of the stars but is quite important in the
case of neutvon stars as mentioned carlier. A detailed analysis of this
effect is to be given in later chapters after the results of the models con-
structed in this research are presented.

More rigorous dzrivations of (1-50) are found in some standard
textbooks on general relativity such as Tolman,(27) Bergman and Landau

and Lifshitz,
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I-5. INTERPRETATION CF TERMS APPEARING IN RELATIVISTIC

j A

For this purpose, it is convenicnt to rewrite (1-9) as:

4P peM <n>>(?CP>+PX1+72(’U) (-51)
an = QWG

where n and ¢ are defined as

N= 3PP 5 9= MO /n 0-52

}3 is the mean density of a star, that is, M = % aR33 . ? (R) is

recognized to be a red shift as discussed on the Preceding page. u(R)
or M has already been identificd with the gravitational mass and in
the above expression u(r) has been replaced by an expression M(r),
also, the energy density ¢(P) has been expressed as p(P}, so that the
first term would take the form of the familiar expression of Newtonian
mechanics.

VWithout the last two terms, (1-51) is identical with (1-1),
noting that in our units G =1 in (1-51). As it was noted, p(P) in
(1-51) is energy density but in a weak gravitational field where ¢ (P)
is low, ¢ ispractically the same as the rest mass density Pme (The
total energy may be expressed as the sum of rest mass energy, kirnetic
energy and potential energy but in the low density limit all the terms
other than the sum of the rest mass energies of the constituent particles

become negligible compared vith the latter.)
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The reason for the appearance of pressure P and energy
density p (P) in the second term ( p(P) +P) can be seen as follows.
The energy-momentum tensor THY was introduced into Einstein's
field equation (1-12) to express the distribution of matier and energy
in the theory of relativity, in the same way that matter density p was
introduced into the Poisson’s equation in the Newtonian theory of

gravitation,

82 32 '\,2’\
;D + g P g = 4 4Gp,
g x ay ¢z

and, therefore, the gravitational potential in Newtonian mechanics o

and the metric gl'l v

in Einstein's theory correspond to cach other.
In a perfect fluid, as has been assumed in the above derivations, we
have seen that the pressure and cnergy density appear as the components
of THY , the same energy-momcnium tensor:

T]] =T22 = T33 == Pand T44 =€
That is, the energy-momentum tensor is determined by the proper pressure
and density. Furthermore, we notc that in the absence of a graviiational
field, the energy-momentum tensor reduces to T44 =¢ and all other
components =0 (p. 200 in reference 27), That is, p(P) in (1-51), the
same as ¢ in the above,represents all the macroscopic energy densities

as seen by a local observer in the absence of a graviiational field and

the effect of the presence of a spherically symmetric gravitational field



in a perfect fluid is represented by the non-vanishing components

T]] = T22 =733 == P, where P is the pressure as seen by a local

observer, Therefore, it is quite natural that P appears together with

energy density in the general relativistic expression {1-9). With a

decrease of the sirength of a gravitational field P becomes much

less than p(P) and the second term approaches unity. With a decrease

in the pressure term as compared with the density term, we sce from

the first of equations (1-52) that n goes to zero. 9 , the red-shift,

has been seen to be proportional o the gravitationa! potential y (1-50),

and this term also vanishes in the limit of weak potentials. Therefore,

the last term also approaches unity as the gravitational field is decreased,

and the expression (1-51) does lead to (I1-1),the simple Newtonian form.
It may be worthwhile to note that GM/ Rc2, the expression for a

red-shift, is also identified with the ratio of the gravitational energy

to the rest mass energy., When the former is small compared with the

laiter we expect the general relativistic correction to be small, clso.

It is to be shown later, quantitatively, that the last two correction terms

in (1-51) are rather significant in neutron stars and that the use of

Newtonian approximation (1-1) in place of (1-9) or (1-51) gives a

serious deviation from the correct answers even for some of the lightest

neutron stars,
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CHAPTER Il
COMPOSITION CF SURFACE LAYERS

11-1 GENERAL REMARKS

From the brief iniroductory discussion in the previous chapter
we can see that the stellar composition enters the structure problems
of neutron stars through the equation of state (Y-5a'). The deter=
mination of relotive abundances of components of the neutronic core
(or hyperon core if the density is sufficiently high) is not too compli-
cated, and that is done in the next chapier where the equation of state
is the major topic. However, as is scen in what follows, a thorough
treatment of the abundance distribution of the consiituent elements
necar the surface is quite complicoted, and I find it necessary to devote
one whole chapter to that puipose. [t is expected that the non-neutronic
outer layers are very thin and in most of the previous work on neutron
star models such regions were simply neglected. However, one of the
aims of this research is to construct models which lead to as realistic
results as possible, the composite equation of state of which includes
the exact composition change in the cutermost layers. Salpeier(] 2) has
already pointed out the possibility of non-negligible effects of en=-
velopes on some of the lightest ncutron star models (by "lightest" the

lowest densities allowed for a ncutron star is meant).



In general stellar structure problems, there are various ways
of determining the composition of stars, Reasonable theoretical
estimates are possible through the theory of stellar evolution and
nucleosynthesis. It is not the purpose of this thesis to go into any
details of stellar evolution, However, it is worthwhile to point out
that a sensible estimate of the composition of the surface layers of
neutron stars is availabie through the study of the theories of some of
the latest stages of stellar evolution (for instence, supernova ex-
plosions, white dwarfs, etc.) and with the help of nucleogencsis.
Good review articles clong these lines are found in such references
as 9, 17, 23, 29, 30, 31, 32, 33, and many oihers.

According to the theory of nuclecgenesis, the synthesis of
elements is believed 1o start with hydrogen. The hydrogen burning,
which transforms hydrogen to helium, and helium o the isotopes of
carbon and exygen, is responsible for the major part of the energy
production in stars. Besides these, the s (mecning slow time scale
neutron capture), a, and e (meaning cquilibrium) processes, etc.,

are responsible for the synthesis of heavy elements in the iron group

3h

from light clemenis like C, O, Ne, which are first iransformed to medium

weight elements such as Mg, S, and Si. The general trend is that as a

star becomes older its internal temperature and density is increased

through nuclear energy generation and gravitational confraction.
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With the increase in temperature the Coulomb barriers are overcome
one by one, and more nuclear reactions of greater complexity in-
volving heavier elements become possible., According to this theory,
the main composition of older sturs should be hydrogen while greater
abundances of heavier elements should be expected in some of the
newest stars and newest star clusters, The last statement is fully sup-
ported by observational facts, Neutron stars cre thought to belong to
the last stage of steliar evolution. Therefore, even though we may
not know the exact path through which the star has reached this end
point, we can at least assume that it has gone through the scries of
nuclear synthesis (which was briefly summarized above) to a ceriain
extent, though we may not know hov far it has proceeded and how
high a maximum temperature it has reached in its life history before
it has cooled to the last stage. The dynamic problem of neutron stars,
like the exact mechanism of the formation of a neutron star, is out-
side the domain of the present rescarch.

However, after having studied some of the theorics of the
latest stages of stellar evolution, especially of supernova explosions
in references such as 9, 17, 29, and 32, | believe it to be quite pessible
that neutron stars are the end products of supernova explosions, and
that the central temperature of the stellar configuration just before

cooling to ferm a neutron star is as high as or even higher than several



billion degrees. If the cooling takes place fast enough so as not to
allow any appreciable change of composition (through any trans-
formation processes), then we expect that the composition in its higher
temperature stage is kept as the final composition even after cooling.
This is a rather rough statement and more detailed explanations are
given later, However, the point is that the neutrino energy loss which
is responsible for a collapse of the core in a supernova explosion
supplies an ideal mechanism for such a sufficiently quick cooling.
Therefore, by investigating the configuration of matter around that
temperature (the temperature where the freezing of the clements takes
place), for any given density, it is possible to estimate the radial
distribution of composition, if we know the radial distribution of
density in a neutron star.

As is shown in more detail in the following sections, at temper-
atures exceeding a few billion degrees all nuclei are subjected to
photodisintegration. That is, all manner of nuclear processes ((v, o),
(Y, P, &y, n) (o V) (P, Y), (0, ¥) and (P, n) reactions and others
involving heavier nuclei) occur in great profusion, It is cbviously
hopeless to try to follow these reactions in detail, and in developing
a theory we must resort to the method of statistical mechanics, that is,
we can find the abundance distribution of nuclear specics with the

assumption that the whole configuration is in statistical equilibrium.



The generally known properties of the equilibrium con-
figurations of nuclear matter in this temperature region (about a few
billion degrees) are sketched below; if the density is less than about
107 gm/cms, the equilibrium configuration consists mainly of elements
in the iron group which have the greatest average binding energy per
nucleon when the temperature is less than about 5 x 107 °K.  For
higher temperatures a phase change to helium occurs under statistical
equilibrium. For a higher density, the transition temperature to helium
becomes somewhat higher and the cquilibrium configuration for temper-
atures below the transition point shifts to the neutron-rich side of the
heavy element valley of beta stability. The detailed investigation of
those elements as a function of density at zero temperature as made

an (8)

independently by Salpeter'” '/ and Vtheeler*™’ are discussed in o later
scction and are re-investigated by the writer (11=-3), The general
trend is that as the density increases, the presence of more neutron-
rich elemenis becomes energetically more favorable and finally a
transition to a free neutron configuration takes place ot a critical
density.

As will be revealed in a later section, the densiiy in a ncutron
star is almost constant in the interior until we come to the very edge

of the star. Therefore, as we go outward near the surface, a sharp

change in composition from an almost pure neutron configuration to
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various degrees of neutron=rich heavy elements with ionized electrons
from layer to layer is expected, the final transition being to the iron
group elements in the outermost layer.

In the following sections these points are investigated in
detail, and some quantitative results are presented. However, before
that there are several physical quantitics to be introduced and cal-

culated.

11-2, SEMI-EMPIRICAL MASS FORMULA AND
THE NUCLEAR BINDING ENERGY

One of the most fundamental physical quantities appearing in
the later calculations is the nuclear binding energy. For elements
available in the laboratory it is best to use the experimental data,

In most of the regions of temperature and density with which we are
presently concerned, that is not the case. However, with the help of
the semi-empirical mass formula originally iniroduced by V/eiszacker
and improved by various authors this difficulty has been overcome.

In simple form it can be expressed as

/3

2/3 1 2
~Q=E=-ajAta)A / + ag 22/A + 04(N-Z) /A (2-1)

where Q is the nuclear binding energy, the first term on the right

hand side is a volume term, representing the energy per particle -
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in infinite nuclear matter, the sccond term gives a surface energy
which takes care of the unsaturated "bonds" of those nucleons on the
surface and is repulsive in effect, and the third is the Coulemb

repulsive term which is just

The last term is a symmetry volume encrgy, representing an additional
energy required to express the tendency of nuclear matter toward
equality of neutron and proton numbers. In equation (2~1} and in all
discussions herecfter, "A" denotes the mass number, Z the atomic
number or proton number, and N the neutron number. In the above,
aj 19,93 ond ay are characteristic constants. Besides those ap-
pearing in (2-1), the addition of an cxtra term which expresses addional
stability of nuclei with paired neuirons and protons, called a pairing
energy, is required in a more complete treatment. in evaluating the

Coulomb term in (2-2) the simple formula for a nuclear radius R

R=%Nﬁ (2-3)

was used (where o =1.22x10°13 cm), if the charge distribution is
uniform. The semi-empirical mess formula is regarded as one of the
most successful outcomes of the liquid drop model, but in ihis model

some other important effects like shell effects are completely neglected.



For some of the problems we encounter this neglect is not justified.
To take care of the fluctuations in nuclear masses related to shell
structure, a number of efforts have been made, in most of which some
analytical correction terms were suggested. Good review articles
are found in references 34 and 35.

In my present calculation it was thought to be most appropriate

(36) which is valid for most of

to use the revised formula of Gameren,
the regions of A except those corresponding to the lightest nuclei,
where all the terms discussed above and more are included.

It is expressed in the form of mass excesses in Mev as
M-A = 8,367 A-0.783 Z + Ev + Es T Ec + Eex + 8(Z, N} +Rz, N) (2-4)
where the subscripts v, s, ¢, and ex denote the volume, surface,
Coulomb and Coulomb=-exchange energy respectively. The symmetry
term is included both in the volume and surface terms. S(Z, N) and
P(Z, N) are the empirical shel! correction and pairing energies, whose

numerical values for every N and Z are tabulated in reference 36.
Y

The analytic expressions of the first four terms are:

-2
—q [1-8 A2, (2-5a)

(A-27) 2 0.62025 _ 2 R%

Es=7[1-—i—-—-—2-——1[1-"';27§“] (2-5b)

ko
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Z(Z-1) 1.5849 11,2273 . 1.5772

E = 0779 2521 [)1- + ] (2-5¢)
c A1/3 A2/§ A IE

_ z4/3 [ 057811 014518 09597

Eex e 0.4323 A]/3 [ - A]/3 - A2/3 + A ]: ( ~ )

The constants B and ¢ were determined from the position of the
valley of beta stability and the constants a and ¥ were deter-
mined by a least~squares fit of the reference mass formula (the ex-
pression (2-4) without the shell and pairing terms) to experimenfclly

measured atomic masses. The results are:
£ =31.4506 Mev, ¢ =44.2355 Mev, a=-17.0354 Mev, y =25.8357 Mev.

In the expression for the surface effect Es’ the term with the
coefficient ¢/y is a symmetry encrgy correction and the sccond
2
bracket [1 - 97222%232 ] is due to the trapezoidal radial model used,

where the boundary is considered to be diffuse and ill-defined. This

is a more realistic model than those with sharply defined cdges. That is:

R = 1.112AY3 1 - 0.62025/A%% x1071% cm (2-6)

The exchange Coulomb energy arises from the correlation in the motion
of the protons within the nucleus.
The results of Cameron's formula are discussed and compared

with the work of others in reference 35, where the major cause of the
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rather large deviations in the region of lightest nuclei is attributed
to an overestimation of the Coulomb exchange term for those nuclei.
However, an inspection of this paper indicates that ihe fit is, in
gencral, excellent in the range of 23 < A < 250, The range of our
major interest is safely within this limit.

The physical quantities of our pariicular concern, namely the
nuclear binding energy Q, the neutron binding energy ¢, whichis
the energy in Mev required to remove one neutron from the rucleus
(A, Z), the negatron decay encrgy €~ which is the energy in Mev
available for negeiive beta emission from the nucleus (A, Z) to the
nucleus (A, Z +1), and the positron decay energy e+ which is the
energy in Mev available for positron emission or eleciron capture
from the nucieus (A, Z) to (A, Z-1), are obtained through the follow-

ing relotions derived from the definition of the respective quantity:

. 2,2 i, _
Q=2 M C2+NM, C%- MC? == [E +E +E, +E_ +S(Z,N) +P(Z,N)]

(2-7q)
e, = QZ N) - Q(Z, N-1) (2-75)
e =QZ+1,N=-1)-Q(z N)+ 0,733 (2-7c)
et= Q(Z-1), N+1)-Q (Z, N) - 0,783 (2-7d)

whete (Mn - Mp) C2 =0.723 Mev was used. (2-7e)
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Equations (2-5a) through (2-5d) wi th the known values of the constants
are used in the evaluation of (2-7a). For S(Z, N) and RZ, N) the
numerical values listed in reference 36 were used. The quantities Q,
€ e and ¢ were computed in this manner for 1 < Z £ 80 and
with each Z for Zg& N ¢ 5Z, The range of Z is extended up to 90
with the same range of N in the computation of Q. The results are
stored in tabulated form.,

The comparison of these results with experimental data (as in

67

reference 37) shows an excellent agreement. For instance, for 3,,Ge ,

the experimental Q value from reference 37 is 578,190, Our resuli
is Q = 578.2255, and the discrepancy is less than 0.1%. A similar
check was made for 30 other elements chosen at random from the whole
range, and as far as the exgerimental data offers values for comparison
the agreement was found to be within 0.1% for a!l the elements with
Z > 12, For lighter elemenis with Z £ 8, our results are not reliable,
The results of this section were used throughout the following
computations whenever our range went beyond the region of experi-

mentally determined masses.

{1-3, EQUILIRRIUM CONFIGURATION FOR A COLD DENSE MATTER

a. Ceneral Discussion

It is a well=known fact of statistical mechanics that the most

stable element (A o Z.) in cquilibrium is obtained by maximizing the



total nuclear energy per nucleon with respect to A and Z. In the
presence of electron degeneracy a slight modification enables us to
use a similar argument,

Consider a nucleus (z, A) and a nucleus (Z-1, A), and
assume that the former is stable against a disintegration to the latter
by the amount of energy e in the absence of electron degeneracy.
Suppose an electron degeneracy with the amount of Fermi energy Ep

a4 (ZI A)

enters. As soon as Ex becomes equal to or greater than ¢
F 9 A

will no longer be stable, the conversion to (Z-1, A) by the inverse
beta process, e~ +(Z, A)— (Z-1, A} + v, will occur, and the stabili-
ty will be shifted to the latter clement. In general, even Z and even
A nuclei have larger value of ¢ 5 and if EF > e, two successive
inverse beta decays will usually take place to (Z=2, A). If the Fermi
energy EF is larger than €700 the beta decay energy of (Z-2, A),
another set of inverse decays will follow, and so on, This will con-
tinue until the beta~decay energy between the nuclei gets larger than
EF° The larger the EF the greater is the expecied shift from the
original valley of beta-stability,

Taking this into account, the quaniity we are intcrested in is
now the energy of the nucleus plus Z electrons relative to "A" free

neuirons, which can be expressed as (B~Z E‘F) where B is the otal

binding energy of the nucleus and E'p is the Fermi energy of the

Bl
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electron gas minus the neutron-hydrogen rest-mass energy difference.
The most stable element is then obtained by maximizing the
quantity

(B%/A) = (B/A) - (Z E'/A) .

b. Resulis of Others

Salpeter used this method to determine the composition of
dense matter at zero temperature. His final results given in refer-

ence 11(b) are listed in Table la.

TABLE la

W e Ceorrs rems—

The Fermi cnergy and correspanding density for transitions under equilibrivm con=
ditions between various rucici by Ek. Salpeter, taken from reference 11(b).

(Z,A) (26,56) (28,62) (28,64) (28,66) (28,68) (30,76) (30,78) (30,80) (32,90) (38,120)n

215 222 228 236 243 2.53 260 266 281 3.16

i
N>

H

E}\:A 0.6 25 39 61 70 85 95 148 20.6 24.0
(Mev)

log p
(gm/cm3) 7.15 8.63 9.5 9.9 987 10,13 10,28 10.84 11.28 11.53

®

Vtheeler et al' ™/ used similar arguments to deteimine the compo-

sition in this range of density at zero temperaiure. Their results are sum-~
marized in Figure 1. Line (1) marks the ordinary vailey of beta stability.
The cross on this line is Fe56. \When Ep =0, the equilibrium point is

56

af Fe . As EF is increased, the most siable element
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moves along the line (3) and finally ot A =122
and Z = 39, it meets the line (2), the neutron drip line, which re-
presents the place where the ncutron binding energy falls to zero.
(2) is called the neutron drip line because as EF’ and hence the
density, is increased beyond the intersection of (2) and (3), heavy
nuclei are destroyed and neutrons drip off as we go along (2). (Note:

V/heeler did not include shell terms.)

c. Results of this Research

In this research, it was thought to be worthwhile to re-
invesiigaie the equilibrium configuration of a cold, dense matter in
a more systematic way by the use of 7090 computer. First, the
quantities A, B, and (B*/A} were calculated and listed as a function
of Z and N in the ranges 11 £ Z £ 100 and 1.5Z < N < 4Z, This was

repeated for E. =0.17, 5, 10, 15, 18, 20, 23, 25, cnd 30 Mev. The

F
above values of N, Z, and E; were selected so that our range of inter=
est in the problem of neutron stars would be well covered, For an

ionized gas of dense matter, the following conversion of Eg to

density p is applicable to « first order approximation:

Ep = (3112)]/3 help NJ}J)V3 (relativistic) or

(2-8)
= (3w )2/3 2/2 pNo/p) 3 (nonrelativistic)
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where No is Avogadro's number and p=A/Z. A more accurate
treatment (Section ll-4) is made in the final calculation.

The maximization of (B*/A) with respect to A and Z was
made in the following manner, In the above table of (B*/A) vs. Z, N, A,
and B, the maximum value of (B*/A) and the corresponding A were
first chosen for each Z and denoted by (B“’/A)m and A respectively.
Next, the quantity (B*/A), selected in this manner was plotted vs.
A, in Figure 2, A particular value of Z is attached to each A,
through the first process. Then, the Z at the peak in the (B*/A)m Vs.
A, curve (Figure 2) gives the atomic number of the most stable element
and was called Z;, In this way the most stable element (A, Z_) was
selected for each value of E .

The result is summarized in Table 1b, Table 2 and Figure 2,
It certainly shows the shell effects and pairing effects and takes account
of the individual fluctuations of the mass correctly, As Er increases
we see a flow of elements from one closed neuiron shell to another,
Up to Eg = 18 Mev, the N =50 shell is the most stable. Beyond this
point, the maximum point shifts to the N = 82 shell. At Eg =30 Meyv,
the height of the elements near the N =126 shell and that at the N =82
shell are almost comparable, but the actual shift of the maximum
element from the peak at the 82 shell to that at the 126 shell did not

occur, The general trend of a steady increase of A and a steady



TABLE 1b

Most stable nuclei ot different densities (different E g) and their
values (B*/A) and Am/z. ), for cold maﬂer
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- ‘ ——— —
Ep ‘ | ‘
(Mew) 047 | 5 | 10 15 {18 {20 ;23 |25 (30
|
log ) 3 i -
(gm/cmd) | 6:07 | 9.37 i10,29 10.82 [11.08 11.26 11.46 [11.58 [11.84
Am 56 841 82 | 712 hio (s | 114
: !
_ *f ‘ : ?
“m 26 34 | 32% 28! 281 40 ! 3 3 | 3R
— 1
N 0 50, 50 | 50 | 50 02 82 ' 82 | 82
, | ? T +
maximum 56 84 b .78 78 |5 122 120 118 L 114
nucleus Fe Se ; 63824 N Ni™ 22" 5 E Ka } Ce
Am : | 3
n=7 | 215 | 248 256 278|278 . 3.05 : ‘ 3.06 | 3.28 ' 3.56
) i | # i ,!
(8%/A) ? |
Mov/prcle| 8:797 | 6:631" 4.650| 2.787| 1,703 1027 ooeo. -0, 565‘ ~2.041




TABLE 2

Some of the peak nuclei under equilibrium conditions at
different Fermi energies Er

50

Ep B%/A) € ol A BA)

(Mev) nucleus| Z | NI A (Mevtcle) &\ev)’nucleus Z N A (Mev/ptcle)
345,841 34 | 50 | 84 6,631 326,82 | 32 | 50| 82| 4.6502

)
L
K36 136 | 50 | 86 6.2l 780 | 30 | 501 80 4.6446
BSS 35 | 50 | 85| 6.614 Gq 291 | 31 | s0| 81 4.6339
5 |G,80 32 |48 00, 6613 10 A8% | 33, 50 83| 46163
| |
NS 128 | 38 | 66| 6.608 |
AB3 133 | 50| 83 6604 5
z,72 130 | 42| 72| 6.602 Z
i .
N73 28 | 50 | 781 2.787 | 2122 40| 82)122| 1.027
28 | A0%a L
: o 1 0 ]
15 1c,79 129 [ 50| 79 2773 |20 IM!24 | 42| 821124] 1.020
z 80 30 | 50 | 80| 2.770 iNb’23 41| 821123] 1.018
c,/7 127 | 50| 77 2.7% 12l e 1 g2liz1] 1,013
: i ; ;
- T

k18 36 | 82 |110)-0.565 (G114 | 321 82 114]-2.041
: | : ! L

5120 [3g | 82 |120]-0.574 5,116 341 82116)-2.051

25 |Ro119 "7 | 82 |119/-0.576 |30 (AJIS | 33 82115)-2.054
B!/ |35 | 82 117]-0.54 G113 | 31| 82:113]-2.059
5,116 - 34 | 82 | 116:-0.586 2,12 | 20 62) 112 -2.067
Y121 139 | 82 121|-0.599 ! |
A M3 %33 80 | 113|-0.616 150178 | 50 126|178 | -2.073




B*/A (Mev / Nucleon)
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decrease of z (= Zn/Am in our notation) is observed in Figure 3
of reference 11 (o). When the shell effect enters this change is
more nearly discrete. The sudden jump from one magic number to
another is typical in my result, This effect is revecled in Salpeter's
final result also (Table 1a), though the numbers attached to the various
elements are somewhat different from mine. Salpeter estimated the
accuracy of his result to be within 20%.(”(b)) Within this limit, the
general agreement between Table 1a and Table 1b is satisfactory.
Especially the agreement of the vdue p= (An/ Z.) between these
two results is excellent, In both, it changes smoothly from 2,15 at

Fe2® 10 3.16 ot 5! 20

. The cffective binding energy per nucleon
(8*/A) decreases smoothly as Er is increased and becomes negative
for Ez > 23 Mev, indicating that all heavy elements are unstable
against disintegration fo neutrons at these high densities.

The present method was used to determine the siability point as a
function of density, but it is inadequate to find its tempercture depen=
dence. Also, the actual abundance curve (such as those shown in
Figures 11 through 16) cannot be obtained in this way. To get these,
we would have to depend on more eluboraie abundance calculations

including temperature effects (non-zero temperature treatment), and

the rest of this chapter is devoted to that subjeci.



114 STATISTICAL EQUILIBRIUM ABUNDANCES

For statistical equilibrium to be maintained, the following

conditions must be satisfied:

i)

o
—
Sa”

‘ iii)

Energy must be statistically distributed among states

of translation of cach type of particle present.
Statistical equilibrium requires that there be detailed
balancing between reactions involving gamma ray
emission and absorption, so that tharmodynamic
equilibrium will be maintained between matter and
radiation.

There must be suitable chain reactions connecting any
pair of nuclei - (A,Z) and (A',Z"), provided that these
nuclei occur in appreciable abundance. As to the
chain reactions, we can assume thai only necutron,
proton and ¢ particle reaction are required to establish
the chain between various nuclei.

The beta process is important in maintaining the
equilibrium between protons and neutrons (including
bound nucleons as well as free ones), The importance
of a particular beta reaction depends not only on the
lifetime but also on the abundance of the nuclei

involved,
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We will note that satisfaction of the above conditions
critically depends on the temperature with which we are dealing,
and actually this sets the lower limit to the temperature ot a few
billion degrees.

Assuming that the above conditions are satisiied, the follow=

ing equation of statistical equilibrium is derived in Appendix 1:

W2

2, ~ZQZ
(A Z) = olp,2) AT V2 2542) 0 AERE o
27K MKT 2A (2-9)

where n(A,Z) =number density of the nucleus (A,Z2)
n_ = " " free neutrons
n_= " " " free protons
Q(A,Z) =binding energy (ground stafe) of the aucleus (A, Z)
WA, Z) =partition function of the nuclcus (A,Z}
M = atomic mass unit
k =Boltzman's constant
h=% 2% = Plank's constant
T = temperature
A =mass number
Z =proton number.

It is convenient to re~express this as

nAD =HAZT) (n, (2. (2-10)
n
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The term which depends on temperature but is independent
of density is separated from the rest in the form f(A,Z,T). Q in
(2-9) was already calculated in Section H1-2 and that can be used

whenever experimental data is not available, « (A,Z) is defined as

wlA,z) =L (2T y + 1) exp (-E,/ /kT) (2-11)

)2
14
where IY is the spin of fhe*{fh level and EY is the energy of the
th level. Actual evaluation of w(A,Z) is done in detail in a later
section (I1-9b). At the present stage it is sufficient jusi fo note that

the dependence of the abundance n(A,Z )on (A, Z) is not large, and
in order to make the present discussion easier we tentatively assume
that w(A,Z) is known. (For insiance, if the excited staics are neglected
and the spin of the ground state is 1/2, w(A,2) =2.)

Assuming that Q and o (A,Z) are known, the frec parameters

appearing in (2=9) are n_, n

p’ M and T. If densities and temperatures

are given and if there is another relaiion which relates n, and n
to total density p, the abundance of cny muzleus ‘A, 7) is determined
eniquely for any given density and temperature,

The hitherto conventional method for providing another con-
dition was to trect p, n, and ¢~ as the components of the chemical

reaction n->p + e and to apply the statistical equilibrium relation

to them. However, in the stellar interior where the neutrinos escape



56

forever at a great rate as in our case, we cannot ireat the above
beta process as the chemical reaction, since the process is not
reversible,

Under steady conditions, however, we can still say that the
total number of electron emissions per unit time is equal fo the
total number of the inverse processes {negatron captures plus positron
emissions) per unit time, and this furnishes us with the required con-
dition. Denoting the electron emission by a subscript minus, the
inverse processes by a subscript plus and expressing the rate per par-
ticle by P(A,Z), and the number density by n(A,Z), we can express

the above steady state condition imposed on the beta processes as
z P_ (Ai’ Zi)n(Ai,Z.i) = X P+(A'<, Zk)h(Ak,Zk) (2"‘]2)
i k '

The summation is taken over all the contributors to the beta reactions
on each side,

In this research, the electron Fermi energy Eg was chosen as
one of the free parameters instead of the density p . Therefcre, the

following procedure wes adopted, Given E_ the correspondine
g P P P g

F
electron number density n, wos first calculated through the relations
223 % o3
= 3 L ——— - E. 1)
EF (31°) e Ny (non=-relativistic)

] 0
2 /3 I V%

C

(2-13)

or Ep = (8= (relativistic)



where ‘i = Plank's constant /27, ¢ =velocity of light, and

m, = electron mass,

The conservation of charge requires that this ng should be equal
to the sum of all the positive ion number densities times Z:

ne =-'Jz Zd. n(AJ' Z'j)

The summation is taken over all the ions 4 of intercst with
A 21 and Z > 1, On the other hand, the conservation of mass

requires that

F = i Ak n(Ak, Zk)/ No

where No is Avogadro's number, and the summation is taken over all
the nuclei . k of interest with A > 1 and Z > 0.

For a given Er we know Ny through (2-13), therefore Ne
in {2-14) can be assumed to be known for any given Eg. Thus we
have three equations (2-10}, (2-12) and (2-14) (namely, the staiistical
equilibrium abundance formula, the condition imposed on the beta
processes under steady state, and the conservation of charge) for the
three independent variables A Ny and T. In principle, solving the
above three equations simultaneously solves our problem. Cnce the
abundances n(A, Z) are known, the conservaiion of mass as expressed

by the relation (2-15) will give us the corresponding density. This
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procedure was followed in this research.

One thing we have to note is that in using the beta process
described above, (2-12), we must first know roughly which nuclei
viould contribute appreciably to the beta processes. The latter can
be found if the rough abundance distribution is known beforehand.
For that purpose a first approximate calculation of n(A,z) , without

the use of the reaction (2-12), is necessary, and it was made as follows.

-5 THE ADJUSTMENT OF n, AND N s AND THE
A?UNDANCE CALCULATIONS \/ITHOUT BETA PXCCESSES

For ordinary terrestrial conditions where EFZ 0, clements are
beta-stable if both their elcciron and positron energies are negative.

However, in such dense matter as we are dealing with where E 25

F
Mev, the valley of beta stability is shifted toward the ncutron-rich
side, Thus, the ng and n, were adjusied so that the maximum
abundance wouid occur along the shifted valley of beta stability for
cach given Fermi energy. Combining (2-10), (2-13) and (2~14), we

can relate the Fermi energy to the frec neuiron number density n,,

and free proton number density nP in the form
. (2-] 6)

The first input values of n, and n, for @ given Er were estimated

by an approximate hand calculations based on the assumption that the



nuclei involved were those giving the maximum at the peak for
each of the selecied values of Eg in Section 11-3 and in the Figure 2.
A program was constructed such that the computer adjusts n, and

n until the calculated Fermi encrgy through (2-16) agrees with the
given Fermi energy within 0.1%, In this method, we adjust the combi-

. A np Z
nation i(nn) (E.E.) }, but not n

, and n, separately, It is

quite possible, therefore, that the n{A,Z)'s calculated in this way

do not give the maximum abundance in the valley of the beta stability.
In that case, the input trial values of n, and n_ were changed

while keeping the product {nnA (_:_P_ )Z} constant, and the calcu-
lations were repeated until the best fir; to the center of the valley was
obtained, This was done for Ee = 0.17, 5, 10, 15, 20, 23 and 25 Mev,
and for T at 5 billion degrecs.

Logarithms of n

n and nP/nn thus obtained are plotted

against density in Figures 9 and 10 and shown as dotted curves, The
number of free neutrons increases with increasing density while the
ratio of the number of free protons to free neutrons decrcascs.
Values of n, and np/nn are then substituted info equation
(2-9) to get the abundance n(A,Z) for all the nuclsi - (A,Z) of
interest for each Ep. About 200 nuclei were selected for cach EF’
which covered the whole of the peak regions in Figure 2 for cold

matter.
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The actual abundance curves thus obtained are not shown
because they are similar to the final abundance curves obtained in
a later section (11-9b), including beta reactions, However, the
general behavior of how elements change with an increase of Eg
is shown in Figure 3; also the first six nuclei, in the order of
highest abundance are listed, together with the abundances, in
Table 3, in the rows marked 1I-5 for cach EF° It is interesting
to compare the peak nuclei listed in the first row with those ob-
tained in Section |I~3 listed in Table 1b, The agreement is perfect

66
Ni 38

except at 5 Mev, where the peak nucleus is in the

28
present result while it is 34&32;1r in Scction lI-3. This discrepancy
is reasonable if we look at Figure 2. The peaks near Ni% and

Se84 are comparable in their heights in Figure 2. The former
corresponds to the Z =28 closed shell and the laiter to the N = 50
shell. The gereral behavior of the stability point as a function of
temperature is, as will be fully demonstrated later, a flow of elements
down toward the lighter element side with an increase in temperature,
if density is kept constants The present result was obtained for
T=5x 107 ©K but that in Section 11-3 is for zero-temperature, As
the temperature is raised from zero to 5 billion degrees the stability

point apparently is shifted from Z = C4 to 28, The shifting of the

peak position with the increase in temperature is more pronounced
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TABLE

3

The first six nuclei in the order of highest abundance and their n(A,Z) at various Fermi
energiesand at T = 5 billion degrees

|
Ep(Mev) 0.17 5 10 15 20 23 <
nucleus | log n = nucleus | lo :N nucleus |log n £ nucleus | log n g nuclcus {log n “ :co_ch log n cmm
A 97A 97A 9 np | nucieus, fog np 9
F % 27 66 22 3 RE 63 ;)22 32.56 m_No 32,78 {1I-5
A: Mm mwo ) M.me mm w?o& wMOmmo M«O.A. szmmo I3 AOFP@M o wm \.mmw s
56 02 - 80 .00 | . 120
ofe | 27.72 MMAzm& 090 Ge™ | 3210 | 3oZn"" | 32.38 | 5Ni5p | 32.71 g | 3278 |Ik9b
54 43 30 79 32 119
26Fe28 | 2735 | 50Cany | 30.70) 50Zngy | 3095 | 5oCusg | 31466 | 8N g, | 3186 |08 o1 13161 115
(2 -
52 64 - 73 78 3 122 .
24C>% | 27.37 | o8N 30.51)30Zn50 | 30.58 | 2gN;7° 132,22 |, N; 32.26 |2, 32.22 |11-9b
52 64 G — 80 76 1217
NA.O\WNW Nﬂ‘ou MQZmMO mOcON mONBAQ wonmo wONSQO “w._ --lwu MGT.O nlvO w.—om._ QMWM\Www 0._ cNV :lw
©)
54 42 31 77 76 119
3 -
ofe 26.73 B Sa 30.31{31Gq 30.40 | 50C, | 31.91 NMO 32.24 i | 3185 |1-9b
60 50 3 _ 82 30 122
@ 2gNigp | 2632 | poTiog 29.95|31 G5 | 3080 | 30Zngp | 30-98 | ogNisy | 3154 | 40Z,05 | 31.21 115
.60 54 3 - 8 31 121
prz. 272 | C, 30.26 358 30.28 | 2,82 |31.15 pw__c 32.06 [ 3oY'4! | 31.84 |1I-9b
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TABLE 3 (cont'd)

Er (Mev) 0,17 10 15 20 23
nucleus |log :,“.xh nucleus | log :>.\| nuclcus |log :b.r:cn_oﬁ * log :>.I nucleus {log ny nucleus | log :>h m
50 &0 33§ . 76 121 121
Gv MA@NN& 26,11 N@mm 29.92 wNOom— 30.25 Mmzmaw 30.81 408 31.35 w@/\mw 31.12 |1I-5
c.%’ 12600 | £ | 3020 | 7893009 N76i3112 | N8 32,02 | 5118|3162 [Ii-9b
o © 26 ¢ 36N 23 28 ! 38t
53 26 - 7 _ 81 124 19
Mwussmm NQ:O@ Nhﬁﬁbww Nwomm won.:&m N@oﬂw MWON.JM.— mop.o.— A.M?»OMWN w.— CWM wwwvmw QOCON ——lw
(6)
53 50 - 33 - 81 79 |a 123
M 25.94 T 30,04 A 30.04| =z 31.08 N: 31.71 A 31.32 [11-9b
DWS 22°1 337s 30 n 28 i 40 A




when two adiacent peaks for different magic numbers are comparable.
For instance, at EF =20 Mev, the peak nucleus is Zr]22 at zero
temperature, but as Figure 2 indicates the peaks near Zr and Ni are
comparable in their heights and the more accurate calculation in
Section 11-9b reveals that the peak nucleus ot 5 billion degrees (and

80

20 Mev) is Ni™" and not Zr]22, though the present calculation gives

Zr]22 as the peak nucleus even at 5 billion degrees (Table 3).

Similar calculations were tried at EF =25 and 30 Mev, but
here, this method proved to be inapplicable. In this region, where
ncutrons are expected to dominate, it would probably be nccessary
to include the conditions imposed by beta reactions, which was
omitied in the present method, but which is included in a more
accurate method presented in Section 1I-9b.,

Figure 3 demonstrates how the abundance curve changes in

shape and how the peak position shifis in the Log n(A,Z)-A plane,
with the increase of Fermi energy (that is, with the increase of density).

The peak is near A =56 and rather sharp when E_ =0,17 Mev; it is

F
very broad ranging from A <~ 43 to 38 when Er =5 Mev, but it is
again well concentrated in a small range in A around 80 when

Ep = 10 and 15 Mev. This corresponds to the N = 50 closed shell,

/ith further increase in EF’ the abundance of nuclei at the N = 82

shell increases very quickly. At Eg =20 Mev, the peck at the N = 50
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shell and that at the N = 82 shell are comparable. Vihen Ep =23
Mev, the former (at the N = 50 shell) has already diminished to

aimost nothing and the latter (at the N = 82 shell) predominates,
with S /l] 20

In the simple approach in this section, other noticeable

as the maximum nucleus.

temperature effects were not prevalent, but the abundance curves
plotted in this section were very useful when beta process contri=
butors were selected in Section 11-0. Further discussion will be

deferred to Section 11-9b, where the final abundance calculations

were performed.

1I-6 BETA REACTIOIN RATES

The importance of the role played by beta processes in
equilibrium abundances has already been emphasized, In dense maiter
such as expected near the surface of a neutron star a great deal of
modification to terrestrial processes is necessary. The present section
is devoted to that consideration, F irst, a brief review of the terrestrial

processes is prasented and then the modified formulae for the stellar

rates will be derived,

a. Terrestrial Beta Processes

In an electron emission, a ncutron in a nucleus is converted

to a proton, and an electron and an antineutrino are emitted, The total
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energy change of the atom, Eqpr or the energy available through

this process, is shared by the cleciron and the neutrino. Ina

positron emission, a proton is converted to a neutron and a positron
and a neutrino are emitted, The total energy change of the atom in
this case is Ecxt + 2mc2, where Eot now is the highest kinetic
energy of the positron and mc2 is the rest energy of the electron,
The conversion of a proton in a nucleus to a neutron can take place
by the capture of a bound electron of the atom instead of positron
emission, especially when the encrgy change is less than 2mc2,

(The most important of such processes is K capture where the electron
in the innermost shell, the K shell, is captured.) These thrce are called
beta reactions in general.

For the beta emission processes, the total energy is shared by
the beta particle and the neutrino, and thus the energy of the beta
particle is distributed continuously from the smallest possible value
to the maximum energy, which is the total energy available for that
process (neglecting neutrino mass).  In these processes the beta par-
ticles and the neutrinos have to be treated relativistically. |t is con-
venient fo express energy by \'/ = (E/ mc2) +1  so that the encrgy will
be distributed from 1 to W ’-‘(Eo/mcz) + 1.

The transition probability depends on the phase space of the

final state, the square of the transition matrix element | i 12 and a
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term which takes into account the Coulomb forces exerted by the
surrounding electron clouds on the emitted beta particle, denoted by F.
The phase space of the final state is just the total number of possible
neutrino states and of beta particle states and so s proportional to
Pe2 dPe Pvz dPy, , where P is momentum and the subscripts e and v

denote electron and neutrino respectively. Noting that Pye=E,=E,~E,

P
-n"% =/ w2 - 1, W =E/mc2 +1 (whereE is B-particle energy), and that

the final state phase space in the interval W to W + d\Y is proportional to

JWe -1y (V- W)? dw, (2-17)

the probability P(W) of emission of a beta particle with encrgy W is

POW) dW =g2 | M 12 F(Z,\"/)\'V(Viz-l)%(W-Wo)zdw (2-18)
where g depends only on the sirength of the interaction.

The total transition rate is obtained by integrating (2-18), and
can be expressed in the form

in 2 2

2.%
T =g IMITE (W) (2-19)

A=

where the Fermi function f was defined to be

w t D g 2 .

2 W)=/ FZW) (7 =1)7(W - W) W \/ (2-20)
This applies to both positron cmission ( +sign) and negairon emission
(= sign). The difference in thc expression for the two cases arises because

the positron is accelerated through the Coulomb field of the surrounding
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electrons while the electron is decelerated, This difference leads to
a different expression for F; thus we denote F for a positron by Fr
and that for an electron by F,

K capture is governed by the same nuclear mairix elements as
beta decay; however, the transition prokability for it depends on energy
in a different way, due to the different phase volume and the electron
eigenfunction. However, using an argument similar to that for the beta
decays, we arrive at the same expression (2-19), provided the proper
form is assigned to the Fermi function f. We denote this by fie o

The function f generally depends only on the atomic number
Z and the characteristic beta encrgy Vg (which is Vi, in the beta
emission processes and Wy, the atomic binding energy of the captured
electron, in the capture process). This quantity combined with the

hali-life,(ft), called the comparative half-life, is extremely important.

£n 2 o and

Af -

From the above equations, it is easy to show that ft = I
v

(€n ‘(’:)}_f__
(ft)

(2-21)

That is, (ft) is a measure of the inverse square of the mairix element and
the strength of the interaction. If the wave functions exgressing the
initial and final states are similar, the overlap is large and the matrix
clement is large, resulting in a small (ft) valve. Since we use normalized

wave functions, if the initial and final states are identical, the matrix



element is 1 in an allowed transition. Since g is small, fi values are
expected to be large. Thus, it is usual to use log ft.

We noted that the beta processes have to be treated relativisti-
cally. There are five types of expressions which are relativistically
invariant, scalar, polar vector, tensor, axial vector and pseudoscalar
interactions. These interactions give rise to different selection rules.
The details which lead us to the selection rules are not shown here but

the results are listed below:

Sclection Rules

Parity Change; Fermi | Gamow-Teller| log ft
I 01 -
Allowed no 0 0 _{" 0 3-5
First forbidden os %1 1 o2 le-s
! Y 0-w0 r b |
i 23 9~11
Second forbidden | no 1, 2 0 2 0 -11.

This list proves useful later when the beta-process nuclei® are selected
for the abundance caiculations, The Fermi selection rule corresponds to
a scalar interaction where no spin flip occurs, while the Gamow-Teller
rule includes the tensor interactions, where a spin flip can occur,

The distinction between the allowed and forbidden transitions
will now be considered. The mairix clement consists of the initial and

the final wave functions which involve both the nuclear term and the
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electron-neutrino term. The electron-neutrino part can be approxi=
mated by plane waves. It turns out that the typical term, exp (=i f’_-%),
of a plane wave for the electron-neutrino wave function is small com-
pared with 1 so that this can be expanded in power serics. In case the
final and the initial nuclear states are not orthogonal and non=vanishing
it is enough to include only the first term of the above expansion, which
is 1. This case is called the allowed transition. If the matrix element in
this case vanishes and if the inclusion of the second term of the ex-
pansion gives rise to a non=vanishing matrix element, the interaction is
called first forbidden, and so on. The order of the forbidden transition
is the number of the first term in this power series, starting with zero,
which gives a non-vanishing matrix clement.

From the above argument, the conclusion is that for any given
degree of transition {allowed, first forbidden, etc.,) our problem boils
down to the calculation of the Fermi function f, because once we know
f the equation (2-21) gives us the transition rate A, The analytic forms
of £ for beta emissions were obtained by Fecnberg and Trigg,(SS) and

(39)

that for K capture by Major and Bicdenharn. Their results are
quoted below, The Fermi function for posiiron emission f and thet

- +
for negatron emission f isgivenby = = <R> foi where <R >

'fs plotied as a function of \/ in reference 33, and
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PR U+ Un fy + Us s
with U = 2T 2.7 (1- exp(-2Td X)7 )un@uo{v/—é,-q,
U= —2TTdx + Uy,
U= = (U7)2 g-2THE,
U= - U, (2T Z -3 + fzu,*) , (2-22a)
wd = (Wom 1 (WET 3W,F6) /30
f,= (We=1)3/ 6
£,7 (Wo™=1 =2Wo dn W, )./ & |

The Fermi function for k capture fk is

It 9K2 WKZ (2-22b)
where log ; .9, 2 = (7.9776-10) +0,03256 7-10(0+48775-0.03502362)
where VI, is the maximum encrgy of the beta spectrum in mc2 units in-
cluding rest mass and W/ is the binding energy of k shell electrons in

mc:2 units. The Fermi function for free cleciron capture in the absence of

degeneracy f_ is given by(4o)

f=6x 1070 f /22 (2-22c)

b. Beta Transition Rates in a Dense Stellar Interior

The temperature range we are interested in is above a billion
degrees, At such a high temperature most of the atomic electrons in a

stellar interior are ionized. In our density range of loégm/c:m3 < P<

]2gm/cm3, those electrons can be regarded as constituting a degenerate

10
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Fermi gas. Therefore, we are now dealing with the beta stability of
various kinds of nuclei in the Fermi sca of an electron gas.

Under such a circumstance the phase space available for electrons
is reduced, which decreases the clectron emission rate considerably
because of the Pauli exclusion principle. The positron emission is hardly
affected; except through a negligibly small electron screening effect.
Due to the lack of the presence of bound electrons, the capture of orbital
elecirons is negligible, too. Therefore, the major process inverse to the
electron emission is now not positron emission nor bound electron capture
but the capture of continuuyyélectrons. Therefore, our concentration wiil
be focused on the derivation of the transition rates of the electron
emission and continum},électron capture in the presence of electron

degeneracy.

(i) Capture rates of continuunélectrons =

In Section ll-6a we saw that all the rates (electron emission,
positron emission and electron capture) end up with the expression (2-21),
provided a suitable meaning is attached to the Fermi function f, The
essential difference imposed by degencracy is due to the effect of the
number density of the surrounding electrons on the rate of capture, which
exist because of the fact that the rate of this reaction is proportional to

the probability that a continumelectron is present at the nucleus where
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it is captured, which in turn is proportional to electron density.
This effect is correctly taken care of by an additional factor
L1 +exp [(W-p)/ T}~ known as "the Fermi distribution function,"
in the expression for the transition probability, Then, following the
same procedure as in Section ll-6a, we get
A= a2t M I2 By 2 32, \ -1
=J g% I M IS FEZWW-1) Wviaw {1 +exp [(vi-p)/2Y)
over all energy
- 2 . . 2 W - .
where T = kT/mc*, p=chemical potential/mc?, and ,; = neutrino
energy/rm(f: Thus, if we define the Fermi function for continuum
eleciron capture by
@ 21wy 2 -1
fo=dy (W=D WWSFE) O rep L (W-p)/ ]} AW, (2-23)
o
we get the same expression for the rate as (2-21). That is,

A= An2/t =WUn /) (2-24)

This is a powerful expression, since ft depends on | M l2 only,
which is fixed for a given set of initial and final states, independent of
the mode of transition. As the Fermi cnergy Ee of the surrounding
electrons increases, the terrestrially stable elemenis and even ihe terres-
trial electron emitier will become unstable against confinuv:)électron
capture when Ep exceeds the electron decay energy. Thus the element

which decays by electron emission terrestrially, as well as those which
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decay by positron emission and bound electron capture terrestrially,
can now decay by capture of conﬁnuunyélectrons, However, whatever
the terrestrial origin may be, the nuclear species we are dealing with
before and after the transition does not change. Therefore, by having
information on the properties of the nuclei before and after the corres-
ponding terrestrial trensition (the values of WB + Z, spin change, and
parity change), which enables us to cstimate the ft value, we can
calculate the stellar rate of transition by equations (2-23) and (2-24).
In the capture process of continuumglectrons,

e+ (AZD) — (AL =1) +Y, (2-25)

the neutrino energy W) =W, + W, and f_ reduces to

(2] 1 2 _
f.= fv.,o (vv'z-l)zW(\aa!o +W) F(1 +exp [(W-p)/1]] Tave. (2-23Y)

A more rigorous derivation may be found in reference 41,

(ii) Electron emission rate in a dense plasma -

The effect of the exclusion principle in a dense plasma on the
6 decay probability occurs due to the fact that the number of fina!
states per unii energy interval P(W) is reduced because of the electron
phase space already occupied, which is a function of the Fermi=Dirac
distribution function {l +oxp [(W—p)/ ”L’j {]. The number of electron

romentum stoies between P, and P, + dP, already occupied is
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S
43 14 expliw- ),/ T

which has to be subtracted from the whole electron momentum space.

Therefore, the modified expression for P(W) dW is now Y

o 2
Pow)dw= 3*IMI* F(z, W)W (W=1) (w-Ww,)

1 y (2-26)
X|1 - d W
1+ e [(W-M)/T]
and substituting this into the expression for the total transition rate, we

obtain = 4@4.___2’_ _f i
N )y °

(2-27a)
with = ~Wo 2
fe= [ FCWemrWIw=T W
Y ox{i-C1r o ((W—,U)/T)]-T}dw N
or (2-27¢)

- 0 A
-Fs = ‘F ( (I "_Fo)
where for convenicnce the following notation was used:
Wo 2
° = j;F (Wo- W) VW= 1 W AW = terrestrial Fermi-function
- (2-28)

= (W -

= 0 (W, - w) T wl+ep(ow-pa) dw
%

(2-29)
i = chemical potential/mc?

The akove applies to electron emission. We note that when © < A no

transition occurs. A more rigorous derivation may be found in reference 41,
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(iii) Modified Fermi function _ for the degeneracy limit -

W, in (2-23') is the energy available through the transition of
the nucleus (A,Z) to (A,Z-1). Therefore if Wo> -1,

this process is exoergic, that is, even with no electron energy
it will take place. Such processes correspond to the elements which ex-
hibit terrestrial positron emission or bound electron capturc. In this
case, the lower limit of integration in (2-23) is 1, If Vi, <=1, the
capture process is endoergic, that is, the electron energy must be greater
than W, for capture to take place and the lower limit of integration is
Vig o

In the degenerate limit, the exponential term in the Fermi-Dirac

distribution function is muchless than 1 and El +exp ((\'/ - p)/’t):)——“-'-" 1.

Therefore, (2-23°) reduces to the integration

f = f\\;vlF w A2 -1 (v +w ) Faw
B ( o endoergic
or 1 exoeryic

(where \'/g =EF/mc2 + 1)
where now the Coulomb factor F can be simplified by approximation

F=2T"dzZ if 2TLZ > 1
given in reference 38.
[ >4

1 if 21z < 1

i

For the eleciron emission, if we sef{(l +expl'_'(\".’-y)/‘1')_’1 } =1,
then f° = A, which corresponds to no transition. Therefore, the second

term in (2~26) was exponded and only ferms up to the second term were



| ‘ retained, Then, exp [(W-p/7)] becomes the leading term. The same
approximation for the Coulomb factor was applied to the electron

emission formula., The results are summarized below:

(A) 2TAZ > 1 (2> 29)

(1) Capture of free e 5 (W 5 )

f.F 9~T°‘Z[WF+ 2wt gw (1 2w W)j "
form ZTAZ ((wemwa) *+ 7 W] (WMol ) (2-30)
+ —;—!wofz(w,:—lwoaﬁj G < )

e ettt s,
— ey

(2) e” emission

~=£20 - 55 ) with
S A @-31)
‘ A/ ’Fo = D(WF,WOVD, (Wo ;W(;) where Dy was defined by

=t £ X St (1= S 5 )

(B) 2Md.Z <1 (Z< 29)

(1) e capiure

fr Pr'+ PF (1+ W2 )+ Wo[z PWE - P Wi
'“@“(P‘:’LWFZ\ (i e s=1)
=—'§[(w,-.-|w )+ '_V.V_gl(w - W, ,)‘f
|Wol (WF Wo |)37 Y Wo<- >
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- (2) e emuss:on A

1C £° (1~ o)

L =R(R,Wo /D, (R, Wo) with
(2-33)

D, (X,%)= X5/ 5+ (41)X>/ 3
-4 hxa+x) 3 (02 X fy G (X YD]

where *(\(/F - 1)" ol ~1/137 ,
° 'mC
f7 = terrestrial e~ emission Fermi function.

c. Discussion of the Results

The modified Fermi functions fcp for confinuuméopture and
f; for the eleciron emission were calculated by the use of formulae

derived above, for

EF(Mev) 0 5

loils 20 | 23

Z 26 |

2,2 |28 | 40 38

The corresponding atomic number Z was selected from the result
of Section l1-5, namely, the element of maximum abundance as found
there was used. Two values Z = 28 and 40 were used for Eg =20 Mev
because there were two peaks of comparable height ot this Fermi energy.
The abundance distribution for Ep > 25 Mev could not be calculated
by the simple meihod of Section [I-5, but the general behavior indicated

that already at 25 Mev the free neutrons would dominate. Therefore,




we expect the elements contributing to beta processes to be some of
the lightest neutron rich elements. Hg7 is already unstable against
neutron emission and so Helium of maximum neutron number is He6.
H4 is unstable against neutron emission and thus the most probable
contributor to the beta process from hydrogen isotopes seems to be H3,
\/e expect also that some hcavy clements near the peak in the zero
temperature abundance distribution which are stable against neutron
emission will be present. Such elements were already obtained in
Section I=3, namely Z = 36 for 25 Mev and Z =32 for 30 Mev.
Therefore, for those highest two values of Eps the following Z's were

selected,

B (Mev) 25 30

iZ 0,1,2 36 0,1, 2 32

The Fermi functions f for all cases were calculated as a function
of W, for the selected familics of values of Z and Eg as shown above.
Besides these, f for zero Fermi energy was calculated by the use of
cquations presented in (2-22a} through (2-22c), In evaluating ° ap-
pearing in the expression for stellar electron emission rate, the f values
in (2-22a) were used. In the derivation of the capture rate in (2-30)
and (2-32), the approximation was made separately for the cases
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In Figure 4, the result for Eg =20 Mev and Z = 28 is shown,

where f was plotted as a function of absolute value of Vi = (Eo/mcz) +1,
The portions of the curve denoted by (1) and (3) were obtained by the

first of the equations (2-30)

which is exactly valid for exoergic capture but breaks down for endoergic
capture with the threshold energy appreciably greater than the rest mass.
The portion marked (2) was obtained from the second of the equations
(2-30) Both approxi-
mations deviate apprecicbly in the intermediate region 25:{[ Vi | § 38.
Therefore, in this region the two curves were smoothly interpolated by
hand. The graph shows that when the threshold energy exceeds the Fermi
energy, the element in question disintegrates by negatron emission, while
when W, < W, electron capture takes pjace. The regions (2) and

(1) correspond to the case in which the element under the terrestrial con-
dition (zero electron Fermi cnergy) disintegrates by electron emission but
becomes unstable against con’rinunn)élecfron capture in the electron gas

of Fermi energy 20 Mev. The region marked (3) corresponds to the
clectron capture whose terresirial counter-part disintegrates either by positron
cmission  or by bound eleciron capture.

The over-all effect of density on electron capture is shown in

Figure 5 and that on electron emission in Figure 6, in each of which the

corresponding modified Fermi function f was plotted against the absolute
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value of the threshold energy of the beta transition of the corresponding
mode (including rest mass) in units of mcz, for a family of Ee values.,

For EF =20, the effect of Z on the Fermi function is also shown. Clearly,
the e~ emission rate is greatly decreased with the increase of Eg, and
hence of density, while the e capture rate increases rapidly with rise

in EF. For the same Eg, the rate is shown to be somewhat less for smaller

values of Z.

11=7 PHOT O~BETA RATES

The temperatures being considered here are high enough for the
contribution of the nuclear excited states to the beta process to be
important. Since most of the excitations are due to photons, such beta
(40)

reactions involving the excited levels are called "photo-beta processes. "

The over-al! rate including the excited states can be expressed as

RS n=za; 42 £,
S (FE), (2-34)

where

(2-35)

0, ={2Ti+ 1) epp (- E¢/4T)
w (T)
is the fractional population of the esxcited state i. The notation used is

U)’(T) = % (Q J;i—}— 1) exp. (-EJ/kT) = Partition function (2-35a)
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J; = the spin of the energy state i
E; = the energy of the state i
T = temperature

To get the total number of beta processes per unit time re-
quired for the abundance calculation as described in Section 1i-4,
the above expression has to be multiplied by the abundance of the
nucleus in question, and summed over all the nuclei- which will
contrikute appreciably to the total rate, as seen in the equation (2-12),
If the ground state is already undergoing a fast transition, the contri-
bution of the excited states will enter only as a perturbation, but if
some decay from the excited states is allowed, while decay from the
ground state' is forbidden in a higher degree, the rate of transition will
be greatly accelerated by the inclusion of the excited states for a

sufficiently high temperature.

11-8 SELECTION CF BETA-REACTION NUCLEI

in the final cbundance calculation we must include the con-

dition iinposed on beta processes (2-12)
5 P.(A ZE DA, Z;):% R (AL ZRMAL 4212
L )y

where the P.'s are evaluated through equations (2-34) and (2-35).

The summation in each side of (2-12) is over all the nuclei contributing
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appreciably to electron emission and its inverse process. Each side
of the equation depends on the abundance of each nucleus; thus, the
first criterion for determining the contributor is that its abundance
n(A,Z) is large enough. This is known from the work in Section I1-3
and =5, In the first sorting process, the following method was
adopted, in the abundance curves obtained in I~5 (Figure 3) if the
peak was broad and flat, as in the Ep =5 Mev case, the nuclei with
abundance n(Ai, Z‘i) 2 10-4 n(A Z.m) were included, while if it
was as sharp as in the case of Eg =10 and 15 Mev, an abundance even
as low as n(A;, Zi) ¥ 1976 n(Am,Zm) was included where n(Aq, Z,)
is the maximum obundance at the peak. The nuclei with lower
abundances than the above limits were not included at all, except in
unusual cases.

The nuclei selected in this manner are further restricted by
selection rules discussed in Section 11-6, through the fi value in the
denominator in (2-34). Rough values of ft can be determined through
the assignment of spin and parity of a parent and the daughter nucleus
for each beta reaction concerned. It is hopeless to do so individually
for all the excited states and for that purpose a statistical approach
was used as explained later, but for the ground states and the first
few excited states such assignment is possible by the help of (i) the

shell model, and (ii) empirical data such as given in reference 42.
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(i) The shell model =

Here | am not going to discuss the shell model itself (since
there are a number of excellent review articles, like reference 43, 44,
etc,, but merely to list some of the rules deduced from the shell model
which were used in my selection of the nuclei.
(a) The ground states of all nuclei with an even number of protons Z
and neutrons N have spin J=0 and even parity, o',
(b) In a nucleus, if Z is odd and N is even, the ground state properties
are determined by the protons alone and similarly for the opposite
case, i.e., for N odd and . even, the neutrons determine the
properties of the nucleus,
(c) In a nucleus of odd A, the nucleons of odd number couple their
spins in such a way that the total spin is that of the last unpaired one.
The above rules plus the level diagram of the shell model
such as Figure IV 3 of reference 43 are sufficient for determining
most of the spin=pcrity values of the ground states and the lewest ex-
cited states of odd A nuclei. For N or Z higher than 50 the exact
configuration predicied by the shell model and verified by experiment
differs for N odd nuclei and Z odd nuclei but a!l such cases are
covered in the Table Vi-1 in reference 43, which | used for the

sclection of most of *he odd A nuclei.
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For even A nuclei, the following rules were employed:
(d) For even-even nuclei, the ground states have J= 0" with almost
no exceptions,
(c) For the first excited states of even-cven nuclei one-third of the
cases have J = 2% for another third in lighter nuclei, the assignment
is J= 4,
(f} The states of even spin, in general, have even parity and of odd spin,
odd parity, for even-even nuclei. The level order most generally
followed is 0*; 2-*; 4"; 6"
(g) For cdd-odd nuclei, Nordheim's weak rule states, if both the odd
proton and the odd neutron are in levels in which the intrinsic spin s
and the orbital angular momentum £ are parallel, that is, if

]
=z

+ %, or both are anti-parallel, j = ¢

n

jn=.Q +%  and jp=£ n

p
and Jp =ﬁp - % j, ond J’p tend to add, although not to the highest
possible value. Nordheim's strong rule states: if one kind of nucleon
is in a level where £ and s are anti-parallel, while the other kind
is in a level with parallel ¢ and s, that isif j =€, + 1 and

J o= ﬂp - %, 0r j n=Ln-2 and j o =ﬂp + %, the total angular
momentum J = lin -jp | o

(h) For odd-odd nuclei, one proton of j and one neuiron~hole of J

in the same level couple to give a total angular momentum J =2i=-1,

that is 1 unit less than the maximum addition.
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These rules in general are more applicabl e for heavier elements
because of the dominance of j-j coupling, and from our previous results,
the elements we are most interested in for Ep £ 23 Mev are heavier than
iron. There are other regularities discussed in references 43 and 44 and
all were used to the fullest extent.

In this way, for all the nuclei sorted by the first procedure
and their corresponding daughter nuclei in both electron emission and
its inverse process, that is, for (A,2), (A,Z + 1) and (A, zZ=1), spin and
parity were assigned. Whencver empirical data were available (up to
some neutron-rich nuclei  at 5 Mev), the empirical results were used,

If the spin and parity change between the parent and the daughter corres=
ponds to a transition forbidden by a degree higher than the third

(log ft > 20), such a transition was discarded without exception. After
studying a number of empirical data, the selection rules discussed roughly

in Section lI-6 were further subdivided into the following empirical criteria:

Degree of transition| Allowed 15t Forbidden 2nd 3rd 4th

Spin change AJ o!110 1 1 1 | 21233 4145

Parity change AT~ | no | no | ycs yes |yes ycs yes not no {yes yes no
3~ 514~6| 6.5~ 7/6.5~7|7~7.5/8.5~9|8~9| 10112 | 15 20 [} °V§5oge

p=d deflg Irh =g (- average 17{

P, d, f, g, h correspond to orbita! angular momertum £ =1, 2, 3, 4, 5.

Generally, an nth forbidden transition has 4 J=n, n + 1 and AT = (1)1,




The third forbidden transition was not discarded only when the
abundance of the nuclei involved was unusually high and when the
spin assignment was not too accurate because of Nordheim's weak rule
on odd~odd nuclei, For instance, in the transition (80, 31) to (80,30)
for Ep =15 Mev, the shell model predicts spin-parity assignment of p 3/2
for odd Z of 31 and g9/2 for odd N of 49, and according to Nordheim's
weak rule the maximum spin of the parent is 6 and parity is - « The
ground state of the daughter is 0%, and the transition to the ground
state was discarded. However, the first excited state of the daughter
can be 2%, and the parent spin could be a value less than 6, and in
that case this transition to the first excited state can very likely be a
2nd or 3rd forbidden transition. In such a case, the third transition was
not necessarily discarded, especially if the abundanze was large. VWhen-
ever there was an ambiguity in the assignment (due to lack of infor-
mation on excited states, uncertainty due to Nordheim's weak rule for
odd-odd nuclei, etc.), the highest possible value was assicned to log ft
so that the eambiguous nucleus will not overrule the nuclei whose as-
signmenis are clearer (like most of the ground siaies of odd A nuclei).

For the nuclei which survived the two sorting processes just des~
cribed, log ft was predicted through the spin-parity cssignment for the
parent and the daughter nuclei, beta decay energy was obtained from

the table made in Section 11-2, and from that, log f was calculated using
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the equations in Section [I-6, and P4 was calculated by equations
(2-34) and (2-35); then, these values together with the iogarithms of
product P_-z;n(A,Z) were tabulated, The last entry, Pi' n(A,Z) isa
measure of the importance of the element (A, Z). Therefore, all the
nuclei  whose Py n{A,Z) tumed out to be less than 107 times the
maximum were discarded. In this way about 15 to 20 nuclei for the
beta process and about the same number for the inverse process were
left as the final candidates. This was repeated for each value of
Fermi encrgy Ep The result for Eg =10 Mev is shown in Tables
4u and 4b,

The comparison of ihe assignments made through the shell
model with the experimental datc shows almost perfect agreement for
ground states of odd A nuclei. In the assignment of the lowest few
excited states of al! nuclei and the ground states of even A nuclei
(especially of odd=odd nuclei), where the uncertainiy of prediction
through the shell model is expected to be large, much cffort was con=-
centrated on the deduciion from empirical data so that the final assign-
ment of these values (some of which are listed in Tables 4a and 4b)
would not be too far from reality.

For instance, let us focus our attention on the element (79, 29)
in Table 4a. p3/2- for the ground state of the parent is clear from the

shell model. The spin and parity of the daughter (79,30} are determined
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B~ decay nuclei at Eg =10 iviev. Notations: (i}¥ denotes the ith excited
state, (ii) "?" means the assignment is ambiguous due to Nordheim's weak

TABLE 4o

92

rule, etc,, (iii) “Ist" means the first forbidden process, "a" means the allowed

transition, etc., {iv) the symbol such as 27" in the 5th column means the

transition involves spin change of 2 and parity change, while the symbol such
as "1t

of the importance of the element

means spin change of 1 and no parity change, ctc., (v) E
transition energy in Mev, (vi} P{_ n(A,Z)
A

is the beta
in the last column gives the measure
+Z) as the contributor to beta process.

Parent 22;? ::\i:’f“"“)’ ci;gfr:re- log ft i E Alo f llog n(A, 2) n(Log-)P
Al Z Pare?'nr idaughter | biddenness T ° o (—rn-LZ—)n
73| 28 -;+?IP3/2" 2™ st 8.5 |10.34]2.23| 27.8 215
75| 28 | 09/2163)"2 | 2”1t 9 11095 3.33| 27.1 21,43
77| 2 | py2 /25 | s o | 1028] 2.2 | 28.8 22,0
77| 29 ps/z‘i G 1 ta 6 | 1024/ 1.9 | 28.8 24,7
2|2 | PyZiz 1 | 17 a 6 1105 |28 | 27.8 24,6
81| 30 | ds/2%py/2” | 171 6.5 | 12.90] 49 | 28.06 26,46
82| 3i 4-or3;§ (245" 2, st 9 12,00{ 4.3 | 28.45 23.75
83| 31 P3/2'§d5/2+ 17 1st 6.5 | 13.00] 492 | 27.35 26,17
85| 32 | d5/2" p3/2- 17 1st 6.5 | 10.96| 3.6 | 27.52 24,62
84| 33 4'or3731i @ ] 15 8.5 | 102 | 0.2 | 28.3 20,0
85| 33 P3/2'§ ds/2" | 17 1st 6.5 | 10.15] 1,7 | 28,33 23,58
% |38 [ord) @) 4 | 10w 8.5 | 1.5 |4 | 26.7 21,7
37 | 33 {P3/27 | d5/2% 17 1st 6.5 | 12,10{ 4,44 | 259 23,34
89 | 34 |d5/2" | p3/2” 1T s 6.5 | 10,52} 29 | 25.2 21.6
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TABLE 4b

e” capture nuclei at Eg =10 Mev, with the same notation as that
introduced in Table 4a.

Rirent ~ Spin and Parity degree AP
ALZ assignment of for- |log ft| L [log f flogn(A,Z)| log (n_(_._’.ZZ_'_*')
Parent Daughter| biddenness (Mev) In 2

75130 | 7/25, /272 | 1,0 |75 |97 |15 | 27.44 |21

- - i
77 | 3 | Py /25 | 7w |85 lowz |33s] 2728 | 2216
77 131 | P20 {0/23°2 [ 1Ya  le [0.67 [3.25] 27.28 | 2453

79031 | py2 /)T | 1ta 6 1943 |-3 | 29.54 | 20.54

v*]

1801 31 | 6or 57, 1(2%

2 1t |85 [10.07] 0 | 29.06 | 20.56
79 32 | go/2* (/2% | 0*a |8 |04 |34 | 268 | 222

|81 32 | g9/2" 'py/2° | 3 3d |15 |9.09 |28 | 2071 | 175
' E - - —

81 33 | Py (/2" 1Ta e 17 3.9 | 26,2 24.1
283 | 33 | PYZ |d52° | 1TIs |65 |94 |22 | .54 | 25.24
841 33 | o2 |@YT | 20s |9 (9726 |23 | 28.3 21,6

83| 34 | gy/2t |9/2%,1 | 1va 17 7 139 258 22,7

85 | 35 | P32 |g52" | 1"t |7 |674 |4.04] 2514 | 2213

87 ' 35 P3/2" |d5/2F 17 1st 6.5 8,23 | 3.42] 25.28 22,2

88 | 35 | 4 or 35|24 2" 1st |85 |83 |3 25,32 | 20.32
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by the unpaired last neutron, the 49th one. For neutron numbers from
39 to 49, the last neutron has the assignment p1/2 or g9/2, and its
levels are expected to be spaced close together. Therefore, if the
ground state is g9/2, it is very likely that the first excited state is
1/2 -, For N = 49, the assignment given in Table VI-1 in reference
43 through the shell model is g9/2, therefore, we expect pl/2 for the
first excited state, This prediction was checked in the following way:
all odd A nuclei with N = 49 listed in reference 42 were picked up.
These are 42Mo9] ’ 402 ,189, 385,187, 25K 485 and 5 45683. All of
them have spin-parity of 9/2 +for the ground state and of 1/2 - for
the first excited state without exception. Therefore, assignment of
1/2 - to the first excited state of the daughter of this transition,
(79, 30), is quite justifiable,

To predict the spacing between the lowest excited state and
the ground siate, general deduction from empirical data was again
used. The spacing is generally large at closed shells, sometime s of the
order of a few Mev, and it gces down to the order of a few hundred
kev in the intermediate region. Most of the elemenits concerned in
this research are near magic numbers, due to the fact that the abundance
peaks concentrate af magic numbers, most of them ai 28,50 and 32,
Qur cases were solved, thercfore, by investigating the gencral behavior

of the level spacing of the first few cicited states mostly in these
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regions. Some of the empirical properties deduced are:

N 50| 50 407 52| 54

Z 128 130 131! 3] 30

(Mev) Ey [2 |18 1 |1 |08

all in the 2 +state, where Ey is the 1st excited level above the ground
state in Mev.

In effect, we can summarize what was done to select the beta
nuclei as follows: nuclei whose abundance is too small were simply
discarded; some of the lowest excited states were included only in case
the ground state spin and parity assignment prohibited the beta process
in toc high a degree to give any appreciable contribution to the total
rate and when the spin and parity assignment to some of the low ex~
cited states predicted a much less forbidden beta process with a fair
amount of certainty. If both the ground and the low excited states
showed too high a degree of forbiddenness or whenever the spin and
parity assignment were too amdiguous, such nucleus was simply discarded.

| believe the treatment of the problem in the way described
above is more extensive than necessary, because, aciually, only a few
key nuclei govern the final beta process, If we do not include higher
excited states in balancing both sides of the equation (2-12) imposed
on beta transitions, we should, perhaps, include more than ten elements

on each side, but when we include all the excited states as was done in
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the final abundance calculations (11-9b), it was found, after investi=
gation, that it is only the maximum nucleus and its daughter nucleus
in both directions of decay, thus a total of four nuclei, which really
govern the total process, Jut of about 30 nuclei selected here for
each Ep, therefore, only about 4 remained in the final calculation.
However, because of the importance of those key nuclei, | believe it
is worthwhile to start from about 50 nuclei and apply careful sorting

procedures as was done here,

119 EQUILIBRIUM ABUNDANCE CALCULATICNS

a. A Somple Calculation

A sample calculation was made including all the nuclei just
selected in the previous section, 11=3, but without the inclusion of ex-
cited states higher than those considered there, at Er =15 Mev and
T=5x10 °K. The computer was instructed to continue computation
until ng and n_  were adjusted such that the total number of electrons

emitted per unit time was equal to that of the electrons captured per

unit fime to within 0.1%., The result is

- 1031.725 _ ~13.584
n—]O , and np—-nnxlO

while the same quantities obtained in section 11~5 without the beta

32+ 1 14+ 1

condition are n, =10 , and Np =Ny X 10

The general cgreement is good.
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b. Final Abundance Calculations

(i) Nuclear Level Structure - The procedure to be followed

for the final abundance calculations is outlined in Section ll-4. The
formulae presented in that section together with photo~beta equations
(2-34) and (2-35) with the Fermi function f obtained in Section -6
provide us with all the necessary relations. In the final calculations,

the summation over all the excited nuclear levels has to be carried out.
Up till now o(A,Z) which appears in (2-9) was set equal to 2, However,
now this approximation is dropped and the exact form of (A,Z) in
(2-11) is computed, carrying out the summction over all the excited
states. There are two other places in which the summation over excited
nuclear levels becomes necessary; one is in the partition function (2-35a)
in photo-beta processes and the other is the summation LI )\i a; appear-
ing in the equation (2-34) which represents the total photo-beta rate per
nucleus, If the states involved arc just the first few and all the spin-
parity assignments have been given for each state as in the case of
Section [I~%a there is no problem,

When a sufficiently large number of levels and high values of
level densities are involved, a conventional statistical approach is
adequate, That is, we can just replace the sum by integration over the
quantity of interest times level density, Excited energy levels of about

8 Mev are rather well known through neutron resonances. In this and
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higher regions the level spacing is sufficiently small and conventional
level density formuiae are valid, In the simplest form this can be ex=
pressed as

p) = C exp[2/au | (2-36)
where p(u) is the level density and u is the energy of the excited
level, and a and C are constants. Some rough estimates of a and
C are given in reference 44, p. 372, Quite a few improvements have
been made on this original form, and now very complicated expressions
designed to make best fits to the experimental results are avai !able.(45)
Unforfunately, however, such formulae are not much help in the present
problem, because the contribution to the photo-beta reaction is ex=
pected to be greatest from the cxcited levels around 3 to 6 Mev in the
temperature range in which we are presently interested, (27) This state-
ment is further confirmed by the results of actual calculations carried

out in this rescarch.

The conventional levei density formulae do not give good results
for excited levels in the region 3-6 Mev. For some of the terrestrial
elements, the level structure of nuclei is rather well known. Ericson
pointed out that if the logarithm of the total number of nuclear levels
below a given excitation energy N versus that energy y is plotted, a
good straight=line relation is obtained. Levels of 533, Fe58, Fe55, FeS7

56 . . .
and M,"" are plotted in this manner in reference 46; level structure thus
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shown in graphical form is distinct up to an excitation energy of about
6,45, 4,3.5 and 2.5 Mev for 5%, Fe%, Fe35, F¢% and Mn
respectively.

From the experimental data compiled in reference 42, similar
graphs were plotted for other elements also. A typical example is shown
in Figure 7, The staircase in Figure 7 clusters closely about the straight
line. This line can be extrapolated to 6 or 7 Mev where conventional
level density formulae start to become applicable. With the help of
plots like Figure 7, our present difficulty in the summation of excited
states is overcome. Namely, from the way such a figure is plotted, it is
clear that the following relation applics:

N = exp [a(u=~-ug)] (2-37)
where N is the total number of states up to the excitation energy v,
and "a" and u, are constants which are determined by the slope and
the intercept of the straight line drawn along the staircase, respectively,
Because "a" and v, are known through this graphical method, we are
now provided with a mecns of direct summation over all the excited states
up to about 6 to 8 Mev. In the present research this method was adopted
up to 10 Mev (that is, the straight line cxtrapolaiion was extended to 10
Mev) and the levels were terminated there. The result revealed that this
method is justified up to T =5 billion degrees (the contribution from higher

excited states can be neglected if the temperature is not too high),but o

serious deviation was noted at 10 billion degrees.
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Questions may arise as to how this method can be applied to
nuclei whose level structures are not known experimentally, as is the
case with most of the neutron rich nuclei we have to deal with. This
problem has been overcome as follows, Recently more systematic in=

- T ) 47} . .
vestigations along this line were made by Cameron et al, in which
sufficiently large amounts of empirical data were accurulated. From
these data were determined cmpirical values of a and ug which

appear in (2-37). Their results were:

a =0.020A (Mev ') for odd-odd nuclei
] (2~38a)
a = 0.016 A (Mev™ ") for all except odd-odd nuclei.
No such clear=-cut expression is possible for u, because the intercept
spreads out all over a large domain rather randomly, but the over-all
average is taken to be
U M 0.5 Mev (2-38b)

This value of uy is edequate when too high an accuracy is not required.
For instance, (2-38b) along with (2-3%a) was used in evaluating w(A, Z)
in (2-9) and (2-11), because the number of nuclei involved is tremendous
(about 400 nuclei) and because a high degree of accuracy is not required
in this case.

A more detailed treatment is desirable in the final calculation of
photo-beta rates because only four nuclei are involved for a given density.

The empirical values of "a" given in (2-33a) are, however, more or less



102
universal and they are thought to be more reliable than those determined
through an individual approach, because, for neutron-rich nuclei, for
whose properties there is no direct experimental data, no direct individual
approach is possible, To evaluate Ug 1 the author made use of the fact
that many of the nuclear properties are determined by the unpaired
nucleons, the last nucleon in the partially filled shell, and, therefore, it
is possible to deduce a rough empirical estimate of the level structure by
investigating the level structure of terresirially existing nuclei whose
empirical data are available and whose odd nucleon number is the same
as that of the neutron-rich nucieus being considered. Evcn though this

is a rather indirect approach, it furned out that u_ obtained in this manner

(o]

seemed much more reliable than that in (2-38b).
In the procedure followed, graphs like Figure 7 were first plotted
for all the nuclei avcilable in experimental data such as reference 42,

of the same number of N or Z as the neutron-rich nucleus of injerest.

79

For instance, in determining v, of the beta~decay key nucleus 28N;

Py

at 15 Mev in Table 5, « staircase, like that in Figure 7, was plotted for

(o]

all the elements with N = 51 and also with Z =28, which were found in
empirical data, Such plots were also made for many other nuclei both
inside of and outside of the regions near magic numbers in order to see the
general effect of closed shells. Then, a siraight line was drawn with the

slope "a" obid ned from (2-3Ca) through the lower portions of the staircase,
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and finally the intercept u_ was read off for each nucleus appearing
in Table 5, and for four more nuclei which govern the beta process at

Eg = 25 Mev which are introduced in Section 11-9b (iii).

(ii) Spin and Parity Distribution ~ The statistical weight

(2 g+ 1) and (ft); for the excited state i appearing in the expression
for the photo-beta rate and the abundance formula are evaluated through
the use of spin and parity distribution functions.

The spin distribution is predicted theoretically to be(45’ 46)

0 (3)= (o) (e (- TVaLT)- oxp(- (T+ V/2C T))
~ Py (2T )R (- (T+5) /2 e

where p (J) is the density of levels with spin J, p (0) is the density of

(2-39

levels with zero spin, 7 is the nuclear temperature and C is a constant.
Some authors use a symbol é instead of 2C7 of the above which are
related to each other by
é =/C7 (2-40)

& is a parameter which characterizes the distribution function and is a
slowly varying function of the encrgy of the excited siates u through 7.
The first problem we have to face in using equation (2-39) is that of select-
ing the value of 2CT(oré) to be employed.

This parameter for light nuclei (e.g. A|28) is investigated by

Hibdon,(48) Hibdon evaluated the constani C for a nuclear radius
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R=1.4A3x10"13 ¢m to be

[ 62453 /55] Mev™] (2-41)
where A is the mass number and B is a constant which when set
equal to 0,55 gives the best fit to the observed level densities. He
concluded that 2C7 =6 (corresponding to 7 = 2.1 Mev) gives the
best fit to the observational results for AI28,
Huizenga investigated the effccts of different assignments of O)

on the isomeric cross section ratios in the region of heavier nuclei of

A from about 80 to 200.(49)

Reference 49{0) Reference 49(b
81 82 . 90 115 197
Bp Se Z . I n Ay |

é~5 | 2<8<3| 8~ 5 5¢d<q 3<8<5

Whené =2, 2CT =8;A =3 corresponds to 2CT =18;o}=5 to 2Ct =50;
6 =10to 2C7 = 200. Generally, a small change of § corresponds to a
large change in 2C7. in the present research, the folloving approach
was adopted. Nuclear temperature T is defined as the inverse of the
derivative of entropy S with respect to the excited state cnergy U, while
entropy is the logarithm of nuclear level density ¢ (U),

;g.]" - (2 P(w] -
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It may be argued that it is rather meaningless to carry out |
detailed calculations of nuclear temperatures as a function of U since
it is a very slowly varying function and especially becausc in the inter-
mediate energy range of about 3 Mev which we encounter in the photo-
beta processes such a statistical approach may not be well justified,
However, just to satisfy my own curiosity 7 was calculated through
equation (2-42) using the simplest expression of nuclear level density
given in (2-36) which was taken from reference 44, and the numerical
values of constants given on p. 372 of the same reference were used,
as they were thought to be adequate when we are making order-of-
magnitude estimates. Equation (2-41) with B ( = 0.55) given by Hibdon
was used to evaluate C. In this way 2CT was calculated, Some of the

results are lisied below.

U 2CT

(Mev) [ ot A=67 |  at A =83 at A =121
1.3 9.8 19 13,4
2 12.3 12,4 164 .
2,5 13.6 13.7 13,2 |
3 14,9 15.1 20 '
4,1 17.4 17.6 23,4
6.1 21.2 21.5 23.4
8.1 24,5 24.3 32,3

10 27,1 27.5 6.4

One of the most general conclusions from Huizenga's work is that O/ is

about 2 to 5 for heavier elements. This agrees with my results shown
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above, because they indicate that for A about 40-120, J is about
210 4 when U is between 1 and 10 Mev. Hibdon's best fit (2CT =6)
corresponds to 3 = 1,73, His investigation was done for neutron re-
sonances which involve excited levels at about 8 Mev. The comparison
of his value with the values listed cbg%efzoggy give an impression that
the latter are rather high in valve., However, we note that 2CT is an
increasing function of mass number A, through (2-41), and we expect
higher numerical values of 2CT for heavier elements. It may be
worthwhile to emphasize at this point that what we are concerned about
is the gencral behavior of d (the parameter characterizing the spin
distribution) and not its exact numerical value, and we can conclude
from the above comparisons that the method outlined previously is
satisfactory as a means of evalucting the spin distribution function in
our present problem.

Having settled the parameter J (or 2C7) in equation (2-39) for
the spin distribution, we next discuss how this formula is to be applied
to our problem.

For this purpose it is usefu} to see the general bchavior of the spin
distributicn given by (2-39). For different discrete values of J, p (J) was

first computed for a typical velue of O/ =3, It turned out that

J 0 1 2 S 4 5 6 /

-

o(J) | 0.0710.18{ 0.23 | 0.207 | 0,149| 0,090]0,045 | 0.019
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That s, it is meaningless to include J > 10. Therefore, the statistical
weight factor (2J; + 1) of the ith level was computed by taking the

average through the relohon

{TTF1>= >: (2:&4—1)(3(;&)/5: P(To) *
(2-43)
<:r>-z: :u PCJQ)/L ?(J£)

The general result is that for lower excnted states around a few Meyv,
the average spin < ..-l- > is about 2 to 3, while for excited levels as
high as about 10 Mev, < J > goes up to about 4 to 5. For heavier
elements higher spins were obtained at the same energy. For instance,
for A=67,< J>=2.3and 4.1 for U=1,3 and 10 Mev respectively;
for A =83,< J >=2.65 and 4,2 for U= 2 and 10 Mey respectively; and
for A=121,< J>=2.8and 4,9 for U=1.4and 10 Mev respectively.
For all the values of A illustrated above, the average spin is about 3 at
an energy of 3 Mev. The region of spin of about 2 to 3,5 seems to give
greatest contribution to the photo-beta rates at T =5 billion degrees.
This result agrees with the general behavior-in the work of Hibdon
and Huizenga. In reference 49(a}, the disiribution of spin is plotted
(p+1307) against J. Maximum J comes at abcut 2.5 forK =3, while 4.6
is the approximate value For({ =3, ivly results quoted above were com=
puted aié =3, In Hibdon's paper (reference 48, p. 191) the maximum
is at around J = 1.2, For lighter nuclei higher spins are very unlikely

to occur because the possible angular momentum for small Z or N is
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restricted to small values as is clear from the shell model. On the
other hand, when Z or N approaches or exceeds 50, a spin as high as 3.5
to 4.5 is possible through the g7/2 and g9/2 levels. This argument applies
to ground states. Generally, higher spins are expected to be possible for
excited states than for ground states. Therefore, our values of average
spin of 2to 5 for A in the region from about 60 to 120 and excited energy
levels from a few Mev to about 10 Mev are perfectly reasonable, We
note, from reference 49, é of 3 to 5 is expected in our case, which
corresponds to a maximum spin of 2.5 to 4.6,

Having settled the problem of evaluation of the statistical weights
(2J +1), it now remains to show how the comparative half life (f) ap-
pearing in the formula for the photo~beta rate is to be cstimated. As
was noted in Section 11-7, the effect of the excited states on the beta-
rate comes as a perturbation to the raic of transitions between ground
states, It is, therefore, sufficicnt to include only allowed fransitions for
excited staies. Consequently, log ft was set equal 1o 5.5 for all the
transitions between excited states. The quesiion then arises as to which
of all possible transizions between all possible pairs of excited levels of
the parent nucleus and ihose of the daughter nucleus arc allowed tran-
sitions.  That is, each component of the photo-beta rafc of excited states
(o )xi)in (2~34) with ft set cqual to 1095 must be multiplied by the

probability of its being an allowed transition, before the summation is
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carried out, supposing that every possible pair of excited levels of the
parent and the daughter nuclei were included in the summation.

The transitions between ground states and the lowest few excited
levels up to about 1 to 2 Mev were determined by the method outlined
in Section 11-8. The summation over the lowest states and that over the
rest of the excited states were carried out indeperndently and both were
summed together at the end. It was necessary to follow this order because,
while the former was settled already by the method of Section 11-8, the
latter has to be treated by the mothod to be outlined in this section.

The probability of the occurance of an allowed transition among
all possible transitions between all possible pairs of excited states of
the parent and the daughter nuclci was predicted in the following manner:
Let us consider a transition between the ith state of a parent nucleus
(A; Z) and the jth state of its daughter nucleus (A, Z*). The selection
rule for an allowed transition requires that for an allowed #ransition the
spin change be 0 or 1 with no parity change. That is, for any given spin
J; of the ith state of the parent, the spin .‘JJ of the jth state of the daughter
can be only equal to J; or i+t 1 for J: 2 1 and equal to J; or
J 1 for J; 2 O, The probability of the spin of the ith state of the
parent to be a particular value J; is P(J; )/zl? \O(Jk) ; that of

the jth state of fhe daughter nucleus fo be a pcrhcular valve J; is similarly

4
()(J ) /Z P( J:Q) J is supposed to take any discrete value
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between Q and 10, Therefore, for each J; from O to 10 of the parent,
the probobilitifsbf the spin to be actually J; is multiplied by the sum of
the probabilit that the spin of the daughter be cnyéne of the J; + 1

and Ji that is, the sum of the probabilit,i/e%f these threc cases (or of the
two cases, JJ =J; and "ﬁj =J; + 1, when J:=0). Then, all such quanti-
ties evaluated for J; form O up to 10 are added together, According to
Ericson (p. 449 reference 46), positive and negative parities are almost
equally probable. Then, for cither parity of the ith state of the parent,
the probability for the parity of the jth state of the daughter to be the
same as that of the parent is 1/2. This is multiplied by the probability

of satisfying the spin selection rule just outlined. Multiplying this last
quanity (the probability for a particular transition to satisfy both spin and
parity seleciion rules for an allowed transition) by the photo~beta rate of
this transition (ai )‘i) and carrying out the summation over all such terms
for all possible pairs between the excited states of the parent and those of
the daughter, the total photo-beta rate per nucleus of a particular nucleus
(A, =) is found,

It turns out, according to this methed, that there is generally
about one chance in four that this transition is an allowed transition in
lower excited states of a few Mev, vhile there is only about one chance
out of 5 to 6 for higher excitation levels of about 6 to 8 Mev. This is as

expected because for lower states a smaller variety of spin values is
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possible (average Jis smaller} and therefore there is a greater
chance for the parent and the daughter to have similar spin values
while a greater range of spin becomes available with the increase
of excited levels and the chance for coincidence (J, =4+ 1,0)

becomes less,

(iii) Discussion of the Results =  The final calculation was

carried out in the range of densities and temperatures corresponding to

To= 234510 ; To=TCK)/10?

Ep = 0.17, 5, 10, 15, 20, 23, 25, 30 Mev.

After a careful re~examination of the nuclei for beta transitions
sclected in Section 11-8, four nuclei for each Ep listed in Table 5
turned out to be the most important and these were chosen as the key
nuclei to govern the photo-beta condition. In Table 5, w(T), P+ , and
the expected total rate B, = P:.‘: n(A,z), using the n(A,Z) from
Section ||-5, are tabulated for cach nucleus.

The information obtained about the properties of the ground
state and the first excited stotes in Scction 11~8 were used in the summation
over the low energy region, and the summation over the region of higher
excited levels was carried out in the manner just described in sub-section
H=-9b(i).

Equations(2-22a), (2-22b), and (2-30) through (2-33) were used

to obtain f as a function of V/g, the energy difference before and after



TABLE 5 - The key nuclei for photo=beta reactions, their photo-beta reaction rates 112
P4 (+for e” capture and ~ for e~ emission), partition functions w(T), and rough estimates

of Py n(A,Z), where n(A,Z) were taken from Section -5, and Py = §

[l.n—2(2Ji +f e'ui/kT/ (ft);] /o(T), o(T) = E(ZJkH)e'Uk/kT in c;s unit;, at different
electron Fermi energies.

EF NL}\CG;ZUS oT) | log P (number/sec-nucleus) Log Bt (cm_3sec- ]),where [3i_=‘.Ptn(A,Z)

(Mev) T__| 5x107°K] 5x1070K]3x 107K | 2x 109K |5 107°K|3 x 109K | 2x 107K
k+ Lo | 5905 | -2929||-3.42 | [-356 |25.39 12490 2476

S+ [oN® | 7.877 | -4127]1-6.25 | [-7.80 [25.02 12290 21.35
em 27Co85 [ 9.681 | -2.053-2.89 | | -2.95 12571 12487 24,81
n- 128N 14645 T-2.29311-381 | -4.60 2620 (2470 123.9

kv 1aA®3 16730 L1615 1406 | [-a32 2792 2538 2522
E]g * 316" | 5.698 | -3.001 []-8.06 | -13,0 70 2264 17.00
e~ |gozn®l T6.783 150160111170 | <1.76 120,66 12680 | 26.74
= 13,688 [ 7,079 | -1.634 (|-5.16 | | -6.92 | 28.62 125,09 123,33

' : } $

kit 31GS! [5.547 | -0.46511-2.86 || -3.02 |27.60 25.21 | 25.04
§]c+ 29Cu”7 | 4.733 -2.766 {1-6.60 | [-9.76 | 28,87 |25.04 | 21.30
2. NI (6593 0680 280 (1250 T msd o7 T3
n- |30Z,81 [ 7.395 | -2.551 ||-6.80 | -10.4 28.05 |23,80  |20.20

k+ [gNbl2Th6e04 | 43761 |1-16 | 1-342  [32.63 |27.27 | 25.45

-

) S R

c+ g NbI2314,685 | +1.606 | |-4.] -3.1 32.67 126,96  |22.96
20 ; ¢ :
e~ 140Z,'23[13.076 | +3.280 {|-1.6 -2,9 476 29.27 127,97

n- i40Zp' 21 11,710 | +1.810 | |-3.5 -7.52 13208 |27.77 123,75
k+ 40Z;121 110,053 | 2,226 |-2.5 -2.67  |31.53 126,80  126.63

c+ |3g5,11% [7.774 | 1200 |43 ||-8.13 |a232 2781 | 23.5
23

m- A7 690 | sudds 120 ||-2.66 (3435 2890 |27.24
e- |wY'2 5043 | 3502 1.8 [[-266 [3465 29.32 i28.46

| i

R
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the transition. The comparative half life, ft, and the statistical
weights, «(T), were taken carc of in the manner just described in
Section [1-=9b(ii).

The rate per nucleus for each element, Py s for cach Fermi
energy [ as a function of temperature was calculated through (2-34)
and (2-35), and plotted. The results are tabulated in Table 5. The
typical curves for four nuclei at Eg =0.17, 15 and 23 Mev are shown
in Figure 3. The curves for other values of Eg are not shown in Figure 8
to avoid over~crowding.

The rate per nucieus times the abundance Bi: = P:r-_ n(A,Z) is
a measure of the importance of the nucleus (A, Z) in the phoio~beta
summation in (2-12). In Table 5, the nucleus marked by k is the maximum
nucleus (the leading ferm in the summation) for the capture process; that
marked by e is the maximum for the electron emission process; that
marked by ¢ is the minor element in capture and is ot the same time the
daughter of the electron emission of the nucleus marked @; and finally
the nucleus marked n is the minor clement for eleciron emission and at
the same time the daughter of the leading capture process of nucleus
marked k. There are a number of captures and emissions between nuclei
marked by k and n and between those marked by ¢ and ¢, but k is expected
to be stronger than ¢, while ¢ is expected to be stronger than n. This

argument applies especially to ground states.
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Let us focus our attention on the last three columns of Table 5,
where the measure of importance of individual nuclei By is displayed.
The exact number listed should not be taken too seriously, because the
abundance n(A,Z) obtained in Section 11-5 (which is not the final
abundance but only the first order approximation) was used in this com=
putation. In the final equilibrium calculation, the sum of contributions
from capture nuclei k and ¢ must be exactly equal to the sum of those
from emission nuclel e and n, but this is not necessarily so in Table 5.

For instance, for E- =10 Meyv, the ?2 ’“.I is higher than I [SZ-, and
' d

thercfore the n, and "o obtained in Section ll~5 must be re-adjusted
so that the total abundence of emission nuclei anl and Ge83 will be
somewhat reduced while those of copture nuclei As®3 and Gell will be
somewhat increased, uniil both sides of the equation (2-12) become equal.
In effect, this maeles .- : the equilibrium point

be shifted fo the less neutron rich side than in [1-5. As is displayed in
Table 3, this shift is negligibly small at 10 Mev (we stiil have GeS?2 as
the top nucleus, and the general features of the curve arc not changed).
This shift to the less neutron rich side is visible at 20 Mev and 5 billion
degrees, where the top nucleus in the final calculation stoys at N80

122

(the M = 50 shell) and does not swiich over to Zr'““ at the N = 32 shell,

but in the previous calculation in Scction !i-5 the top nucleus was 7122,

It may be noted, however, that both in Section 1!-5 and here the peck at
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the N =50 magic number and the 82 magic number are comparable at
20 Mev, and that a slight change in equilibrium condition can change
the maximum point from onc pedk to another. As will be shown later,

the peak does go up to Zr]22

at 2 billion degrees, where the cold
matter approximation applies better.

It is expected that at low enough temperatures where the contri-
bution to photo-beta rates by higher excited states becomes negligible,
the nature of the ground and the lowest excited states are more obvious.
From our results, that evidently happens at 2 billion degrecs, because at
this temperature the behavior is just as expected from the properties of
these lowest states, Namely, in all cases at 2 billion degrees, the major
nuclei marked by k and e have larger values of total rate B4 than
those of the minor nuclei ¢ ond n cxpected from the properties of the
lowest states, while this is not true if the temperaiuie is increased to 5
billion degrees, For instance, at 5 iviav, the total rate of the minor
nucleus Ni67 is larger than that of the major nucleus Co% for the
emission process, and similar switching from major to minor and minor to
major nuclei happens at 23 Mev, too. This is because of the fact that
the criteria for the major and minor nuclei were originally made through
the selection rules applied to the particular properties of the ground and
lowest excited states only, while as temperature increases, the contri-

bution from higher excited states becomes more and more important and
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is independent of the spin and parity of the lowest states. The general
effect is to make individual nuclei more indistinguishable, This
deviation of the behavior from that expected from the cold matter ap-
proximation is larger for higher temperatures.

Once we knew P, for each key nucleus involved, our problem
was solved uniquely by following the procedure described in Section
11-4, by the use of the equations (2-9) through (2-15), P, for all key
nuclei cf the photo~beta processes were stored as a function of Fermi
energy and temperature as the input to the IBM 7094 computer so that

equations (2-10) and (2-12} supply one function relating n,, and n

« @

B
Anocther relation is furnished by (2-14) and (2-13a) or (2~13b) for any

given Ep and temperature, The two unknowns ny, and n, are determined
uniquely by these two relations, The actual procedure followed was to
first moke a guess of n, and o from the previous results of Section 11-5,
substitute these values inio both sides of (2~12) and (2-14), and then cal-
culate each side of each equation separately including all the nuclei of
interest, about 4C0 in the final cbundance calculation through (2-14)

for the whole range of density, and all the key nuclei for beta reactions

in (2-12), and then compare cach side of the equotion with the other.

This was done both for equation (2-12) and (2-14) simultaneously, and

was repeated until the final re-adjustment of n. and Mo made the right-

n

hand side and the left-hand side agrec to within 0.1%. \then this con-

dition was fulfilled for a given Ef and T, the program was repeated with
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a different set of values of Eg and T, until the whole ranges of Ep
and T listed at the beginning were covered. The corresponding
density was calculated simultancously through equation (2-15), the
summation being taken over all of the 400 nuclei.

The final values of the free neutron number density n, ond the
ratio of free proton number density to neutron number density "p/"n in
logarithmic scale as a function of density for a family of temperatures
are plotted in Figures 9 and 10, The dashed curves correspond to the
results of Section 11-5, at T =5 x 107 °K. The agreement is satisfactory,
noting the rough approximation adopted in Section lI-5. The temper-
ature effect is striking. Both quantities n, and np/"n increase rapidly
with temperature. With the increase of density, n, increases but n_/n,
decreases. These graphs show that, at a density of about 3 x 101 gn/ em®
and above, neutrons are dominant and the proton number is negligible,
As the density goes below p c~3x 10“ gm/cm3, the free neutron
number drops more steeply at lower temperatures. For instance, at
T=2x10" °K and p ~ 10! gm/cm3, slightly below the critical density
Por the neutron number density is 10710 times the valve at p ~ 3 x 10!
gm/ cm3, and, therefore, we can regard 2 billion degrees as a freezing
point, That is, at 7= 2 x !09 °K, there exists a distinct transition of
equilibiium configurations from heavy nuclei to neutrons at around 3 x 1 0“

gm/ cm3, and the cold matier approximation of Section 11~3 is perfectly
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valid. The straight line near the top of Figure 9 corresponds to a pure
neutron configuration.

The final results obtained in this section are displayed in
Figures 11 through 16 at Eg = 0,17, 5, 10, 18, 20 and 23 Mev, respective-
ly, at a temperature of 5 billion degrees.

The first 6 nuclei from the maximum in the descending order and
their abundances are tabulated in Table 3 fer both the first results (1i=5)
and the final results (1I-9b). A slight shift from the zero~temperature
point toward lighter elements and a lesser degree of shift toward the less
neutron~rich side (smaller value of molecular weight p~ A/Z) at higher
temperatures are expected and such effects are generally noticeable in
Table 3, especially at Eg =20 Mev, as has already been discussed, where

80 and Z,Z]22

the two peaks at Ni are comparable, However, in all other
cases a slight change in shape of the peak in these two results wes not
noticeablie in the abundance curves, and consequentiy, to avoid repetition,
the first abundence curves plotted in Section [1=5 are not shown here.

The change in abundances of nuclei with increase of density as discussed

in Section 1i-5 and displayed in Figure 3 applies exactly in our final

result. This can be easily checked by comparing each abundance curve

displayed in Figures 11 through 16 of this section with each corresponding
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curve displayed in Figure 3 of Section H~5. The only noticeable difference

between these two results comes at 20 Mev, where the peak at Z /21 22 ;s
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higher than that at N;SO in the previous results (Section 1i-5), while
it is reversed in the final results in this section (Figure 15). A slight
increase of humps at lighter isotopes of the same elements is noticed,
too. For instance, a careful comparison shows that the N564 hump in
Figure 12 is higher than that in Figure 3, which is the expected effect
of temperature.

A siriking change in shape of the abundance curve is noticed if
we compare the results af T = § x 107 °K and those at 2 x 107 °K . For
this purpose the abundance curves at these temperatures at Ep =10 Mev
are plotted together in Figure 17, The maximum nucleus is the same, that
is, Ge32, The difference is that, at the lower temperature (2 x 109 °K),

82 and that the contribution

the pedk is sharply concentrated around Ge
of all elemenis other than a few isotopes of Ge, Zn, Se and Ni is negli-
gible, with the abundance less than 1010 times the maximum, while
other elements around the peak become more important with the increase
of temperature. This is why for a very cold body it is justified to use the
method in Section !I-3 as a first order approximation, where only the top
nucleus was included. When the temperature becomes as high as 5 x 107
©K, this is no longer justified, because in Section 11~3 we used the ap-
proximation p = A n(A, Z.)/Ng (where Ap, and Z is the mass number

and atomic number of the top clement and N, is the Avogadro’s number)

but at sufficiently high temperatures this approximation breaks down and
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an exact summation of p = .:_ A; n(A;, Zi)/No must be carried out over
all the nuclei of appreciable abundance, as was done in this section.

As can be noticed in Figure 17, the increase of abundance with the
increase of temperature is more significant on the ligher side of the peak.
As temperature is increased above 5 billion degrees up to a point
where a sudden transition to the neutron phase takes place, the behavior
nearly remains constant. At this point, a transition from the peak at the
heavier element group to the peak at the lighter element group takes
place very quickly and all elements are cenverted to pure neutrons
within a very narrow temperature range. The exact temperature at which
this transition to the neutron configuration takes place is very sensitive
to density. For a density higher than ~ 10]2 gm/cm3, we have a neutro-
nic corfiguration even at zero temperature; for slightly lower density,
the transition temperature is expected to be slightly higher than 5 billion

0'0 gm/cm3, the

degrees. For the much lower density of about 107 ~ 1
transition temperature is near but somewhat lower thon 10 billion degrees.
For a density lower than ~ 107 gm/cm3, transitions, first o helium at
around § ~ 6 billion degrees, and then to neutrons at about 10 billion

degrees, are expected from our investigation, Af T =1010°

K, the equi-
librium point is shifted to ncutrons at all densities considered (0 Mev
<Ep< 30 Mev).

The nuclear abundances ot T =2 x 109 °K are depicted in Fig. 18.

The general behavior is the same as at T =5 x 109 °K (Figure 3). Let us
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examine the EF =5 Mev curve, At T=5 x 109 °k (Figure 12), the
abundances of other nuclei (than the top nucleus) is so great that the
peak is almost flat, in the broad range from A = 20 to almost 90, and

it involves various kinds of isotopes of the various elements. Nuclear
reactions in each direction through complicated networks connecting
great numbers of nuclei, at this temperature, are sufficiently rapid which
allows the existence of unstable elements with noticeable abundance.

?

V/hen the temperature is decreased to 2 x 107 °K, the curve is seen to
have changed in that sharp peaks now appear at Ni66 and near Se84
(daghed curve in Figure 18). It is intcresting to compare this curve with
Figure 2 for a cold body. In Figurc 2, the two peaks at Ni% and e84
are almost comparable, though the latter enjoyes the maximum position,
In the final calculation at T =5 x 107 °K, the former peak at ;66 is
much more pronounced, but the curve at 2 x 109 °K shows that the latter
seems to gain a more important position. However, we do not know
whether a further decrease of temperature will cllow the actual switching

over cf the maximum from Ni66

to 5004. The equilibrium conditions dis-
cussed in the beginning of Section 11-4 break down at around 2 billion

degrees and it is meaningless o carry out calculations for lower temper-

ature. Both the approach for cold matter and that employed in this section

are subject to various kinds of uncertainties (which arise, for instance,

from the way in which the photo=beta reactions were treated and their
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key nuclei were selected, etc.), and the most legitimate treatment will
be that we do not determine the maximum nucleus either at Ni% nor
at Se84 but simply regard that cither one could be the candidate with
a small estimated error, This is no difficulty at all in our case, because
in our composition calculation of the surface layers of neutron stars, all
the nuclei near the peak (not only the maximum) are included in the
summation, and, therefore, it does not matter much which is the actual
maximum,

I wish to emphasize the positive side, namely, that the cbundance
distribution obtained in two cntirely different approaches leads to a
striking agreement, which is clear from comparing the results of this
section with those in Section {|-3,

Similar calculations were carried cut at 3 and 4 billion degrees
also. At 4 billion degrees no intcresting change from 5 billion degrees
is observed. The abundance curves display almest similar shapes at the
same positions. At 3 billion degrees the numerical values of the various
quantities are almost halfway between the case of 5 billion and 2 billion
degrees. The cbundance curves are also intermediate in their shapes,
while the pecks remain at the same positions. At 20 Mev, the maximum
stays at Ni down to 3 biilion degrecs. The transition from the peak near
Ni to the peak near Zr for lower temperatures, therefore, has occured

between 3 and 2 billion degrees.
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I should now like to describe how the high density region
was treated. In Section 1I=5, it was noted that the simple technique
of adjustment used in that section failed for Er =25 Mev. This indi-
cates that matter consists mostly of neutrons in this density region, as
expected. It was pointed out in Section ll~6c that under such circum-
stances (where neutrons predominate), some of the lightest neutron=

rich elements like H3 and Hc6

may be abundant. [f the temperature
is sufficiently high, it is possible that the heavy elements around the
peak regions in Figure 2 (cold matter approximation) may coexist in
equilibrium with neutrons and some of the lightest elements, even if
such elements are unstable against the emission of neutrons and beta
particles. Therefore, an additional investigation was made in this
high density region, namely, at EF =20, 23, 25, and 30 Nev. Aftera
careful investigation of beta processes in the region of the lightest par-
ticles, it was concluded that the following induced capture processes
are most important:

Heé +e" > HC - H3+ 3 if Eg =21.54 Mev is exceeded

He4 +e"— H3+ n if Ep =206 Mev is exceeded

H3 + e”— 3n if Ep =9.29 Mev is exceeded,
These endocergic reactions do occur if the Fermi energy of an electron

exceeds Eg. At Ep =20 Mev, only the last reaction is energetically

possible, while for 23 and 25 Mev, a!l of them are energeticaily possible,
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‘ All of the above reactions arc first forbidden transitions and therefore
log ft was set equal to 6.5, The curves like those in Figures 4, 5, and

6 were used to determine f. The f values thus obtained and P+=En 2/(ft8 -f

for each case are listed below:

EF log f log P+ %
(Mev) | H9 He% | Hg® H@  Hg? He©
20 | 5.7 } -0.96

23 | 6.4 4,3 " 3.1 -0.26 - 2.36 -3,56
25 17.2 5.7 5.28 +0.54 - 0.96 -1,38
30 | 7.7 6.8 6.62 +1,04 +0.14 | -0.04

At Eg =25 Mev, the following remained as the final key nuclei for beta
processes in the heavy element region: 37Rb”7, 39Y]2], 33As] ]3, and
117

3587 “+ In the summations which appear in the abundance formula and
the related formulae, all the nuclei in the peak regions of the EF =25
Mev and 30 Mev curves in Figure 2 were added to the nuclei previously
selected for Er < 23 Mev, and the computctions were repeated in- - -

cluding . the bea processes of the lighiest elements.

The results are (i) the additional beta processes in the lightest
element regions are not important enough to give any appreciable change
in the final result at Eg < 23 Mev, because the abundance of H3, He4,

and He6 (which, with the exception of neutrons, are expected to pre-

dominaie in this region), as given in Table 6, are dot sufficiently great
at these densities; and (ii) ot Eg 2 23 Mev, however, the total matter

density for a given Eg is greatly increased as the result of inclusion of

these beta processes,




The final numerical results are summarized in Table 6. For
Fermi energies of 0.17, 5, 10, 15, 20, 23, and 25 Mev at T =5x10° °K
and 2 x 107 K, the following quantities are tabulated: the density fr
the nucleus (Am, Z;,) of maximum abundance, its abundance n{Amr Zm)e
the neutron number density npe the proton number density nps the He4,
H3, and Heé abundances Neg Nyr and Npeb respectively, the electron
number density ng, the total positive ion number density n; ., the
electron molecular weight Her and the corresponding quantity for positive
ions pron o n(A,Z) is defined by (2-9), p by (2-15), ne by (2-14),
(2-13a) and (2-13b), while the last three quantities in the table are de-

fined by
’nm:}%%(’é‘i» XC>

Yo =EAN C‘\{;,Zk‘ﬁ/@giz n(A, 2y &
;A‘.m:(%AQI(Aﬁ,z@/[{_ n(A:,2;))
where k sums over all nucleifor A2 1, and Z >0, and i sums over all
nuclei for A>1and Z 31,

At T =5 x 10° °K and Eg =0.17 Mev, tne number density of helium
exceeds that of Fe® s the maximum heavy element, and there was, therefore,
some frouble in the adjustment, and the numbers in the first row in Tabel &
are estimated to be in error to chout 10%. The partial densities of helium

and iron at this point are nearly equal, and it is expected that with a slight

increase in temperature, we will get an almost pure helium configuration.
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TABLE 6. Final equilibrium abundance calculations. Density p , the mass number and

atomic number An

and Z

m of the element

of maximum abundance and its number density n(A,, Z,), nevtron, proton, He4, HS, Ioo~ clectron, and toial positive ion number
density n, Nor Ngr By MY m9 nes and n;. ., and electron and positive ion molecular weight e and pione _.wmvmn,:<m_$ are listed

at seven different values of electron Fermi energy

E- In Ma

and all number densities are expressed in _uon:n_mu\maw.

v, ot T=5x 107 °K and 2 x 107 OK, respectively. p isin ma\naw

r. %.mmim log AmlZm _om:A>3~N5v log n,, _om:—o._omsn log n, _om:Imo_ ng L He Heon
2| 0.17 3.86x10° | 412 | 27.02  |25.0026.7 | 28.6] 1.01x10%7 2,08
5 1217x10° |66 128 | 31.00 28.21123.48 | 27.1219,31 | 15,22 15.50x10%2| 2.15x10%! | 2.375 | ¢0.75
~|10  1.87x100182 132 | 32.09 29.82[21.11 | 2562|2017 ] 16.94 | 4,40x10%% | 1.38x1092 | 2.563 | 81.75
115 6,70x1010178 {28 | 32.20 31.7617.97 | 23.19120.89 | 18.38 | 1.48x103%] 5,09x1032 | 2,720 | 79.29
“l20 1.78xiolligo (28 | 32.77 33.67/14.56 | 20.20121.31 | 19,22 | 2.59x1034| 1.29x1033 | 2.985 | 83,14
23 (2.72x10'1ig0 [28 1 32.30 33.93)12.07 | 19.76/21.35| 19.30 ! 5.25x10%4| 1.841033 | 3.06 | 88.3
25 tg8.18x10'1 1118136 | 32.95 35.43110.94 | 16,79 6.88x16°%| 1,87x10%3 | 7.158 |263.22
70,17 | 3.64x100 156 126 | 27.51 11,7196 | 17.271104 :-25.00 | 1.01x1027 | 3.89x1027 | 2.16 | 56.3%
5  12.15x107 66 {28 ; 31,27 17.01] 6.1 | 14.591-6.32]-16.86 | 5,49x109¢| 1.94x10°! | 2.362 | 66.76
2110 11.87x1010182 |32 | 32.14 22.25| -2 9.44 =3.76|-11.73 | 4.40x10°3| 1,37x1032 | 2.563 | 81.99
2115 16813100 130 | 3265 | 26.10]-8 | 451-2.371-8.96 | 14207 477x10%| 2677 | 79481
al20  '1.70xi0lligo 123 | 33,02 30.89|-17 | -2.961-1,33] -6.86 | 2.60x1034] 1,28x1033| 2,848 | 79.85
123 [2.79x101Tl120[38 | 3285 33.21|-21 | -7.35]-1.35| -6.90 | 5.35x1034] 1,38x1093 | 3.138 |122.10
25 6.81x10'1 118|36 | 32.95 35.28-26 |12.12|-1.67] -7.55 | 6.87x103%| 1.86x1033 | 5.970 |221.08
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The helium abundance, however, drops to practically nothing by the time
the temperature has dropped to 2 billion degrees, as the first row in the
T=2x10° °K box in Table 6 indicates.

This table also shows that n_ increases and n_ decreases steadily

n P
with increasing density, but that the proton number is negligible through-
out and its importance is restricted to the fact that it is one of the key
parameters for the solution of the problem together with n, and TeAs
to the tritium and Heé, their number densities are negligible in general
but their participation in the beta process causes an effect of some
importance at 25 Mev.

At 5 billion degrees; He4 is never important for Eg > 5 Mev, the
neutrons are negligible up to p ~ 10]0 gm/cms, and at Eg =23 Mey,
the neutron number exceeds the number of nuclei of maximum abundance
Ni80 but its partial density is still less than that of Ni<C,

At Eg =25 Mev, neutrons predominate. This is also demonstrated by
the value of p, and p: . at this point, For a pure ncutron configuration
B as defined in (2-44) is infinite. The sudden increase of p, at 25 Mev
as observed in this table can be,therefore, taken as the indication that the
phase transition to neutron configuration has taken piace by the time the
Fermi energy has risen to 25 Mev. The consideration of the behavior of

the gas for densities higher than this is deferred to the next chopter, There

is no point in carrying cut the calculation of this section (for the heavy
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element configuration) at Ep > 30 Mev, because the deviation due to
neutrons is so significant already at 25 Mev.

AtT=2x10 °K, all light particles except neutrons are
negligible. The general behavior of the neutron number density is
similar to the case for 5 billion degrees, except that n,, drops far more
sharply with decreasing density ot 2 billion degrees than at 5 billion
degrees. Some interesting differences between these two temperature
regions arc noted in Table 6, At Ee =0.17 Mev, the most abundant
nucleus shifts from F956 at T=2x 109 °K to He4 at T =5 x 107 %K, a

80 to Ni78 occurs at 15 Mev, and there is also a

slight shif: from Zn
rather significant shift at 23 Mev,

In the definitions of (2-44), the summation over i is carried
out over all nuclei except neutrons, vhile that over k is carried over
all nuclei including neutrons. If the neutron number is negligible,
Mo ~ (M) and Mion ™ A. That is, these are a measure of the average
value of the quantities A/Z and A, respectively, in the absence of
neutrons. A comparison of o, and A, is therefore intercsting, The
behavior is just as expected, Up fo about 5 Mev, the effect of helium
(A =4) keeps p, . smalier than the Ay, of heavy nuclei, At Ez =10
and 15 Mev, ., and Ap, almost coincide. As the Fermi cnergy is further
increased, pion becomes larger than Ap. This is because in the definition

of Wig, in (2-44), the summation in the numerator includes neutrons,

while that in the denominator docs not. As a consequence of this, Fion
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becomes greater than o straight average of the quantity A when neutrons
predominate. The deviation is enormous especially at Eg = 25 Mev,
where p. - is more than twice as large as the Ap, of the peak nucleus.

This is another powerful indication that transition to the ncutron phase
has occured before this point is reached, somewhere between Ep =23 and
25 Mev,

The results shown in Table 6, except the first row, are estimated

to be reliable to within 5%.

1i~10 DETERMINATION OF SURFACE CCOMPOSITION

Hoving calculated the actual abundance as a function of temper=
ature as well as of density we are now ready to complete the discussion
started in Section lI-1, We can assume that the formation of a hot neutron
star was completed at a very high temperature (say, about 10 billion degrees),
and then picture it as a hot, semewhat extended body, which is cooling
rapidly, mainly because of the tremendous rate of energy loss by neutrinos.
(A quantitative description of neutrino cooling is deferred to Chapter V.)
The neutrino loss rate becomes unimportant at a litile below a billion
degrees; however, we noted that freezing occurs before that. Siatistical
equilibrium breaks down at around two billion degrees (Section !l=4) on
the average, which means that the precise freezing point depends on the

individual processes along the individual networks, depending on the
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abundance of the nuclei involved and the rates of the processes.
However, it is expected that all such processes break down below about
2 billion degrees. This expectation is consistent with the results just
obtained in the previous section (11-9b).

For temperatures below the freezing point, slow nuclear processes
and ordinary beta processes may, if given enough time, change the com-
position slightly from the statistical equilibrium value. However, the
neutrino cooling rate is still quite fast even below the freczing point
and remains so until the temperature drops to about several hundred million
degrees, and we can therefore assume that not enough time is allowed for
those slow processes to take place. \Ye are particularly interested in
neutron stars with an internal temperature in the approximate range 108
to 3 x 107 °K, This is because at higher temperatures such stars cool so
rapidly that they escape any means of direct detection while ot lower
temperatures they are tco faint to be observed. Therefore, if we hope
to detect the star, its temperature must be restricted *o the range stated
above, The information from x-ray measurements is perfectly consistent
with this expectation (Chopter V).

The above argument leads us to the conclusion that the statistical
equilibrium configuration near the freezing point is to be regarded as the
surface composition of our neutron star. A possible deviation from this

conclusion may come about duc to diffusion processes (V=4d). When the
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scale heights near the surface are sufficiently small, such an effect may
cause some appreciable change in the result, as seen in Chapter V.

It is, however, encouraging fo note that the composition enters
the equation of state, and hence the stellar structure problem, in the
form of the molecular weight i, or Mion ©F electron number density
ne and these quantities are rather insensitive to temperature according
to the results shown in Table 6. (The values at 25 Mev are excluded be-
cause this energy corresponds to the neutronic phase, outside the range
of the present investigation.) A large drop in the value of te of Ep=0.17
Mev and T =5 x 107 °K, as compared with the value at T =2 x 107 °K,
is due to the iron-helium conversion, That is, the maximum element at
5 x 10° ©K is helium with Ho =2, while the maximum element at 2x 107°k
is iron whose p value is 2,15, p at the two extreme temperatures 2 and
5 billion degrees practically coincide af Eg = 5 and 10 Mev. It is more
reasonable to attribute the discrepancy of about 3% between B ot S and
2 billion degrees, at Eg =15 to 23 Mev, to the uncertainties inherent in
the method employed, rather than to a temperature effect,

The conclusfon is that in the actual construction of a final com-
posite equaticn of stcte to be used in our models, the most reasonable
procedure will be to take, at cach given density, the average of nelor pe)
at 2 billion degrees and that ot 5 billion degrees, notimy. that the differ-

ence between the two is extremely small,
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CHAPTER HI
EQUATICN CF STATE

. INTRODUCTION

It was emphasized in the first chapter that the equation of state is
one of the decisive factors in stellar structure problems, There it was expressed
in a symbolic form as:

P=P(p, T, C) (3-1)
which expresses pressure as a function of density p, temperature T, and C which
represents the compesition. The exact form of (3-1), of course, depends on the
particular problem we are to deal with. For instance, if the total pressure suppor=
ting the gravitational force inside a star comes from an ideal gas of particles of
number density n, it is just

P= nkT (3-2)
where k is Boltzman's constant. In general, the number density is related to
matter density in a simple way, For example, if a star consists of ionized nuclei
(A,Z) and completely ionized electrons, and if the partial pressure of nuclei
(A:Z) is negiigible compared vith the electron pressurs,

n=p/uH where p=A/Z, and H is the mass of a proton,
(3-3)
and P= kp T/(uH).
If matter consists of a completely degenerate gas of particles of number density n,

then

P =K /3 (3-4a)
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in the non-relativistic case and
P =K, a3 (3-4b)
in the relativistic case. Kj and K, are constants.

The above examples apply when there are no interaction forces between
particles, When the interaction between particles enters, the equation of state
can take quite a complicated form. A more general form of the equation of state
which applies to the whole degenerate region including both extreme limits (non-
relativistic and relativistic) is particularly useful in this research and will be
derived in Section 111-3, The equation of state for a real gas (meaning "with
interacticn forces") is investigated in Section lil-4. The density appearing in
the general relativistic equations is not the common maiter density but a total
energy density and special care must be taken to recognize this point, There is
also an upper limit o the pressure according to the theory of relativity (Section
il-5). These aspects will be discussed in later sections. The composite equation
of state which is to be used in this research is constructed in Section Il1-6. Before
that, however, we should note that, the betier the model we try for, the more it is
necessary to deal with a complex structure of various mixtures (not homogenecus
matter), For instance, in o simplest approximation we may use just a pure neutron
configuration for neutron star models. However, if we anclyze the sitvation more
carefully, we find neutron matter to be generally contaminated with various other
particles. Therefore, it will be advantageous to concern ourselves with the equation

of state for mixtures. In the most general form,

P=1Pin;,T) (3-5)

n(p)=%. ’nt
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That is, the total pressure P is the sum of partial pressures P of
each component i giving an appreciable contribution to the pressure, while
the partial pressure of a component P; is related to the total density of matter
p {or n) through the partial density of the component n; . To evaluate the last
expression, namely the relation between the partial density of each component
and the fotal density, the relaiive concentration of each comnonent must be
known, Before going into the main discussion of the equation of state, | think

it best, for the sake of convenience, to settle this problem of composition first.

H1-2 EQUILIBRIUM CONFIGURATION OF MATTER AT HIGH DENSITIES

a. General Discussion

In the previous chapter the equilibrium abundances were investigated up
to a density of cbout 1012 gm/cms. We noted that the matter consists mainly of
iron group elements (ordinary terresiria! elements) up to a density of about 107
gm/cms; as the density is increased the equilibrium configuration shifts from these
ordinary elements to the more neutron-rich nuclei (namely, the nuclei with larger
values of A and smoller values of Z/A). The shift is greater the higher the density,
and finally when the density reaches about 3 x 10'! gm/cm3, trensformation to
neutrons begins. It is interesting to see vhat happens after that, As the density
is further increased eventually all the heavy nuclei will dissslve into free neutrons
by means of electron cepture, and a pure neutron configuration is expected to
result. However, the last statement is not exactly correct because neutrons are

unstable against decay to protons and electrons by 0,782 Mev, the neutron=
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hydrogen mass difference. Therefore, the neuiron gas has to be contaminated
with protons and electrons, and the minimum partial density of the proton=
electron gas must be 107 g/ cm3. In degenerate cold matter, we can assume
that all the perticles are in the lowest states. That is, the total energy is just
the sum of the rest masses of all bosons and the sum of the Fermi energies in-
cluding the rest masses of il fermions present. For a neuiron-proton~electron
system the stability is acquired when the neutron Fermi energy plus 0,782 Mev
becomes equel to the sum of the electron Fermi energies and the proton Fermi
energies, because each fermion cccupies cells of phase independently, If the
neutron Fermi energy exceeds the amount required by the above equality, two
neuirons at the top of the Fermi seq; on colliding, could each be transformed
info a proton and an eleciron. This process will continue until the equilibrium
condition is achieved. With the furiher increase in the folal density of matier,
the partial densities of neutrons, protons and electrons increase, and when the
Fermi cnergy of the elecirons reaches the rest mass of the muon, 106 Meyv,
reutrons can be transformed into protons and negative mucns through the reaction
n-sPspu 4 (3-6)
where ¥ represents an aniineutrino. V/ith a further increose of energy, various
kinds of hyperons cre created, one by one. The appeorance of a new particle
occurs wnenever the Fermi energies (including the rest moss) of the initial and
the final particles become equal to the threshold energy for the creation of that

pariicular particle. The situation is analogous to the concept of communicaiing
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channels in nuclear physics where a channel for a certain nuclear reaction
becomes open when the incident particle acquires an energy greater than or
equal to the threshold energy of the reaction. What was said above about the
reaction n — P+e” +V regarding the way the equilibrium condition is reached
applies also to the reactions involving mesons and hyperons, Some of the hyperon

production reactions are:
IM=>P+s5~ om->2N
9P 25T, 2N-235° QAN 2=° @7
N+ N » P+ =7

We note immediaiely that in these reaciions strangeness is not conserved,

o

A2N-> P+ =7,

The time scales of processes like (3-7) are on the order of 1077 sec, which is long
compared to nuclear time scaies but exiremely short from the astronomical point
of view. Even though faster reactions cxist, these are fasi enough to maintain
equilibrium. Consequenily we can safely assume that thermodynamic equilibrium
is maintained throughout.

The density ot which the hyperon transformaiions take place is in the ronge

15

from 10~ to 10"/ gm/cms, far obove nuclear censity, and as will soon be quanti-
tatively shown, ail the constituent baryons (nucleons and hyperons) and leptons
{excluding neuirines which escape from the star as soon os they are created) are
highly degenerate socn afier creation at the threshold energy. Even when the
temperature is as high as § billion degices (the typiccl rempercature used in cal-

culations in Chapter 1Y), the degeneracy is so high that the cold matter approxi-

mation is fully justified. (For instance at T =5 x !09 °K and p = 10]5gm/cm3,
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the ratio of neutron Fermi energy to kT is about 400.) Thersfore, in the preceding
and the following discussion of the equilibrium concentration of components at

total densities of order of or higher than nuclear density {p > 1913 gm/cm3), we
can assume that all the constituent particles are in their lowest energy states,

To make the discussion most general, the configuration in which all possible baryons,
mesons, and leptons are in equilibrium in the density range 1015 ~1017 gm/cm3 is
treated in the next section, and the results derived there are applied later to more
resiricted cases. For reasons to become clear shortly (upper limit to the pressure =
Section 11i-5), it follows that higher density values than this are of no interest to

us. It should be added that 77~ mesons do exist at some of the highest densities

in our range.

b. Abundances of Various Components in a Highly Degenerate Baryon Gas

Let us consider an assembly of all kinds of sub-atomic particles, the
criteria for the existence and absence of the respective particles, and their
relative abundance at a given total density at zero temperature, in a density region
of a few orders of magnitude higher than nuclear density.

Some years ago we had a rather tidy list of 30 so-called “elementary" par-
ticles, Today 60 or 70 more are added to our list. The first problem we foce in
this section is to determine which of this profusion of particles survive as the au-
thentic components of our baryon gas in our range of interest. First of all postirons,
photons, neutrinos, positive muons, positive pions and K mesois are all absent ai

zero temperaiures because nothing prevents their decay and annihikition, On the
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‘ other hand, stability is established between hyperons, nucleons, negative muons
and electrons; that is, due to the complete degeneracy of baryons and electrons
at zero temperature and the Pauli exclusion principle, the decay products of
those particles find no unoccupied place in phase space. The stability of pions
is established through the high degeneracy of muons af very high densities, Even
though it seems hopeless to take into account all the newly discovered particles
properly, the situation is not so bad, First we note that most of the new particles
are isobars of famitiar nucleons and hyperons in the original 30, and they are in
higher states (i.c. heavier) than the originals. As a maiter of fact, the final models
show that most of the newly discovered particles are in states too high to enter
our picture. This is because their effoct becomes appreciable only for

' p> 7x 1016 gm/ cm3, while the present method breaks down before that, die to
the relativistic {imir on pressure.

+ +
Let us consider the lowest states of baryons, N (929, % ), A (1115, 1 ),

+), and Z= (1318, 3). Among all other sub-atomic particles, only the

L {1193 3
isobars of nucleons in the first excited states, denoted by n* and p*, possess
masses lower than or comparable with those of the lowest state hyperons listed
above. The ground state baryons plus n* and p* turned out to be sufficient in
tihe present problem. Besides these, some leptons and mesons may also enter, In
conclusion, ii has been decided that the inclusion of the foliowing 13 porticles
is sufficient for the investigation of our baryon gas below a density of about

17.5 3
10 gm/em :

—
—

o o oot 5T =T =0
@ S LPPIM A TS T2, 2T
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. Most other sub~atomic particles simply do not exist in our degenerate
baryon gas due to the fact that their stability is set up by weak interactions and
there is nothing to prevent their decay and annihilation as with positrons, positive
muons, etc, which have alrecdy been mentioned. Some others are absent due to
the higher threshold density required for their appearance, as is also the case for
mos} of the excited baryons,

Qur problem is now reduced to the actual determination of relative con=
centration of the 13 sub-atomic particles listed cbove, in (3-3). (In the above
discussion, the words "elementary particles" were avoided, and instead they were
called "sub-atomic" particles because some authors feel the former is not a suitable
expression.)

. Due to the assumption of zero temperature, we first note that

(i) the energy of the system is minimum ot cquilibrium. - Bosides the requirement

of minimum energy and conservation of cnergy, we also note that the total baryon
number must be conserved in all processes responsible for the establishment of the
equilibrium, and also that the star as a whole, as we!l as each of its local macro-
scopic regions, must be electrically neutral; namely,

(i1} conservation of barycn number, and

(i1i) conservation of electric charge,

These three requirements are sufficient to determine the abundance of the

individual components uniquely as a function of toial density. Mathematically,

these are written as

P

* I
¢ ":a—g’}%‘%%&?%c"—r?’)%wm M CE (3
U o
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3 o, -

where the subscript k denotes € ,M P D* n 71 A, 277 and =

S MN,=const = m (3-10)
L

where £ denotes a sum over all baryons, and
2M Z = M_F (3-11)
— T+ T & -
where the integration in the first is from zero to the Fermi momentum, the top of
the Fermi sea in momentum space; and € is the total energy density, M the
moss, ¢ the velocity of light, p the momentum, n the totdl baryon number
density, n.- the pion number density, mo  the pion mass, o =2I) +1 s

the statistical weight and h is Plank's constant, n_ are the positively and

+
negatively charged particle number densities and Z is the charge. An importent

relation between number density and Fermi momentum is

> \3 y

which is applicable for ail fermions, Applying this relation to all fermions, the

last two equations reduce to

-
EL}: a EQ = const and (3-10%)
9 DB 3 3 _ er-
PP+2‘P* P - F; u- ’}’1 T (3-11%

The constant on the right~hand side of (3-10%) depends on the total baryon number
density, (Conservation of lepton number is not included in the fundamental con-

ditions beccuse neutrinos escape from the siar, and the number of leptons in o given
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volume is not fully specified but is determined by the total baryon number under
thermodynamic equilibrium.)

Now our problem boils down to the determination of the minimum of
equation (3-9) together with the supplementary conditions (3-10') and (3~11%),
Such minimum value problems are well known in classica! mechanics. By setting
equal to zero the quantity é with respect to each Py, the minimum state of

the sysi'em is achieved, whe re § is defined c:s

£ Foic T e

N
+ok(Pp +2P,4+P Pg_-"e?-l““,- 30’1,,7 P‘)(a-w)

53, o ¢ ) P +p 4P 4P
"'6(P'n+2 ‘:4: PI\ Hyz"-1~ PP—“QF;*.! 'zji‘ F‘i' 30)

The arbitrary constants a and § are eliminated through the differential

equations

gy
? ij

where the subscript k runs through al! particles appearing in the original three

= 0 (3-14)

. 0 + -
equations, e, p, P, P*, n, n¥%, /\, L,L,L,= and ==°. The results are:

(@) for positively chc.ged baryons k = P F* and Z+, \

SN
e +PM (M, ¢+ P2> (meC+Fe )" (3-150)

(b) for ncgahvely chcrged baryonsk = I and == ", i /),
2 2 2
(Mpc™+ P, YL (M P )-x— (Mol P ) (3-15)
(c) for neutrai baryons k =n* A% 19, and =9,

(Myc “"Pk) (M '+ p2 ) (3-15¢)
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(d) as the relation b‘etween leptons and me'sons,

(M + P;)/z: (MeC™+ P )/2:- My C (3-15d)
At lower densities all particles whose threshold densities are higher than the

actual density are absent and, therefore, their number density is simply zero.

For such particles j, the equation nj =0 replaces one of the equations in (3-15a)-
(3-15d). The relative concentration of each component present is determined
uniquely by solving equations (3-10%), (3-11") and (3~15a) through (3-15d) simu!-
taneously, As we go from lower to higher densities we meet the phase transition
from phase of lower densities (fewer particles) to that of higher densities (a larger
nureber of particles). This problem of concentration as a function of tofal density

is investigated quantitatively in the next sub~section.

¢, Number Densities ai Different Phascs

(i) Proion-eleciron thase - This corresponds to the region of the partial

density of the clectron-proton gas below ~ 107 gm/cms, where the sum of proton
and electron threshold energies is less than neutron rest mass, and the transformation
suichas n— P +e” + U eliminates the existence of nsutrons and all other
particles except protons and electrons, In this case, our equations reduce simply

to

ng = Ny = p/H (3-16)
where p is the total matter density and H is the proton mass. The first
equality relation is just (3-11), The condition (3-10) was used o obtain the las

equality relation,
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(ii) Neutron Phcse =~ This corresponds to the range 10125 58 x 1014

gm/cm3

where the sum of the proton and electron threshold energies is larger
than the neutron rest mass but where the electron threshold encrgy is lower than
the muon rest mass. In this case equations (3-10'), (3-11"), and (3-14) reduce to
Ne ’)’l =N X {[H-o(?(/’IT +X (m/’ﬂﬁ 3] -1} (3-17)
with of = (M'n’MP)//mff“ \5'64; X=2Tme/Mo;
(3-18)
i Moz 8 (MeC/HY = 8/ Ko ,
n, +n, =n (total baryon number density) ~ p/H. (3-19)
Mg is the compton wave length, COnce the neutron number density ng is

specified, the concentration of protons Nor that of electrons Ngr the total baryon

number density n, and the total matter density p are found from above.

(iii) Nucleon-muon-electron Phase - We noted in Section {ll-2a that

when the eleciron Fermi energy reaches about 106 Mev, negative mu-mesons are
created through reaction {3-4). For densities higher than this but below the
threshold density of the first hyperon appearcnce, neutrons, protons, negative
muors and electrons exist in equilibrium. The equilibrium abundance of each

of the constituent pGl’I‘lCl"S is caiculated from

]
(M c* 1P1> -(M c"+P 3/”‘ (Fe e >/2
3 —
Pe"i’ PM - PP

which are deduced from (3-11"), (3-15a) and (3-15d),
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. To a first approximation, (Pe2 + mc2 c 2)% ~ P, since electrons are already
highly relativistic (relativistic parameter x = PF/me ¢ ~6bnear p~ 10]5
gm/ cm3), and the second of the above equations leads us to -
2/3 /2
’Yl“':’ﬂe“- (AM//M-?») ] (3-21)
where A b= (3’17‘2 7\“3)'], and ?\P = ’h'/m}J ¢, the muon compton wave length.
In this region the muon numbers are still sufficiently smal! (for instance at
? ~ 10]5 gm/cm3, log ny ~ 36.4, while log n = 38.8, log Ry~ log N = 37.1)
and the number densities of protons and electrons are found in terms of neutron
number densities from (3-17). Then equations (3-17), (3-19) and (3-21) completely
determine Npr Ngr Ny 7 1y and p asa function of n, e
It may be noted in (3-21} that when n, < Ay no muons exist and therefore
. Ay is the threshold electron number density for creation of p~~mesons, This corres-

ponds to a total matter density of about 8 x 1014 gm/cm3@

(iv) Hyperon Phase = In the range of density from about 1019 gm/cm3

to 1017 gm/cms, the hyperons listed in (3-8} begin to app=ar and rapidly increase
in number with an increase in density, In ihis phase all equations in (3-15q) -
(3~15d) are valid except those where pion terms are gresent. These equations to-

gether with the condition of conservation of eleciric charge and baryon density

lead us to
€Y°:£M’ £Y+: £ Ee , (‘-:Y— =&, + 58
3-22
€=y, EM IVt Mer OB

i1
as the equilibrium equations, Here, € Kk S (Mk2 c2 + Pk2) *, n is the number



156

+ - LR 4 Ld
density and the subscripts Y, Y~ , Y® denote positive, negative, and neutral

baryons respectively. The equohons (3-22) are further snmphfled to

N AR U‘(Af‘/ﬂ V4T % k= A5 =° n*
2\ 3/
(b) M=z 0k M1~ ’”r>3] ‘ _qup*g
2/ /
(C> m: ""a&%z [1 (A"”’//n. >3j 2 (3-29)
3w2%3(1'(“%v/M&3f7&b
V) 3/2
= (3 na3) (1= (M /MeY ] y
A - (31“ )(1 (I\’Z/M——>j2

$/(MpC)

a = 21 I + 1 is the statistical weight and I} is the spin of the particle k.

where A° =

I, =3/2 for nucleon isokars n* and p* and their a =4, but for all cther par-
ticles in this phase a = 2.

An argument similar o that for the muon phase implies that the Ako are
the threshoid neutron number densitics, the Ak+ are the threshold piroton number
densities and A= are the threshold L™ hyperon number densities for the

creation of the particle k (or of = in the last case).
In (3-23) the numbers of positively charged particles have been expressed
in terms of proton numbers, that of the negatively charged particles =" in
terms of L, and neutral particles in terms of neutron numbers, To obtain a!l the

abundances in terms of neuiron number dersities, Ner Np and Ny= must be related
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to n . Such relations have been provided by those equations of (3-22) which
were not used in the derivation of (3-23), This problem has been solved graphi=
cally and the results are plotted in Figures 19 and 20: in the former, electron
and proton number densities, and in the latter, on an enlorged scale the number
densities of e, p,qt~ and I have been plotted against neutron number
densities, in which the whole range of the hyperon phase has been covered.
Equations (3-21), (3-23), plus Figures 19 and 20 provide means for determining
the abundances of all the constituent particles once the neutron number density
ny, is specified. Then equation (3-10} gives us the total baryon number density
and the relation

p = E My e

the total matter density. Later it will become clear that it is most convenient to

(3-24)

chose nj, asa free parcmeter instead of p, in this region.

The abundance of the various particles in the hyperon phase has been
calculated in the manner described above and is shown in Figure 21. For p g/1015
gm/c:m3 the total baryon and neutron numbers prociically coincide; for p2>3x 1015
gm/ cm3 the rapid rise in the number of other baryons depresses the neutron numbers

considerably from the curve of total baryon numbers. By the time the density in-

6

1 3 .
creases to about § x 10°° gm/cm™ the concentrations of ali the baryons are about

40

102- 10 cm-3 and they are all of the same order of magnitude. The electron

and p number densities exhibit a sudden dip a litile above p = 1015 gm/cma,

where the L ~ hyperon appears. ny and n, become constant at around p =107
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gm/cm® due to the appearance of T+~ mesons, as will be discussed in the next

sub-section. The hyperon threshold density p, (the density where a particular
hyperon of question appears), total baryon number density n, and the neutron

number density at each threshold point n_ are listed in the table below. The

n
particles are arranged in the order of appearance with an increase of density.
t, is a relativistic parameter defined as t, =4 sinh'] (F’-,;n/Mn c} where PFn

is the Fermi momentum of neutrons vhich is related to neutron number density
as PFn = (3172) é/h nn]/3 in a relativistic case. M

n is the proton mass.

T IR AT I A I A I A =k

log ¢ 114.89 15,05 115,28 {15.23115.84 (16,01 [16,10 116.38 [16,45 {17.21
log M 28,67, 2 38,82 139.05 129.05 {39.50 (39.75 |29.83 140,09 [40,18 |40.9
log n,, [38.67;33.82 |38.98 {28.90 |39.27 [37.34 {39.37 |39.46 {39.57 | 40.04
n | 193] 2151 2.41 | 2.41] 2.856| 2.98 | 3.07| 3.42] 3.50| 4.37

t

It may be werthwhile to note that the order in which the porticles appear
is not in the order of increusing masses. For instance, I~ is much heavier than
/\°, but I begins to appear at lower densitics thon A°. The reason is that the
I hyperons have fo neutralize the positive charge of the protons whose con-
centration increases with increasing n {(as seen in Figure 21}, and starting from
a certcin point, the production of L™ is energetically more economical than that
of one new proton and iwo new electrons. The same argument also accounts for

the oppearance of ~=_  hyperons carlier than rt hyperons which are much

! ighi'erc
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The results are also summarized in Table 7 where the total baryon number
density n= Ln) , the number density ny. and the relativistic parameter t of
each particle k are tabulated for seven typical density values in the hyperon
phase (in the range of 10'3 gm/cm3£ P 10"/ gm/cm3). These equations were
evaluated for each of the different particles by successively letting k equal n,

P, e, L, etc,, in the previous equations, This table also shows the way various
sub-atomic particles come into existence in succession with an increase in density.
We note that t, of electrons is much higher than that of other particles. Ths is
because electrons are already extremely relativistic in this region. The table
shows also that all the heavy particles approach the relativistic region (note that

P~ Mc when t is around 3 to 4) when the densiiy reaches about 1017 gm/cm3o

(v) Pion Phase - When the total matter density excceds 1.4 x 1017
gm/cms, it becomes more economical energeticaily if elecirons or p~ are con-
verted to 7, This corresponds to the case where the thieshold energy of the
electrons and negative muons exceeds the rest moss of the negative pions. In this
case all the equations in (3-15a) through (3~15d) are vaiid. After this point is
reached the number densities of electrons and i ~mesons stay constant with a

further increase in total density at

ng = 1.2 x 10> cm-s (3112'Xw3)-]
2 (3-25)

T

_ % -3_ c° 2 232 ,.3
np—3.36x]0 cm _7:—2'("1 -mp)//’ﬁ

v s

This is because all the excess electrons and p~ above the threshold value are

converted to %~ in a higher density region, The W~ number dersity increases
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TABLE 7, Properﬂes of sub-atomic particles in the critical region of 109 <ep

< 10! gm/cm o Ing, N, t and p are the total baryon number densnty,
wﬁe number density, the relativistic parameter of kth particle, and the total

matter density, respechvely in c.g.s. units,

log p 115,05 115,30 | 15,60 | 15.90 116,07 | 16,36 | 17.02
log (Zny) 38,83 39,07 | 39,35 | 29.64 | 39.80 | 40.09 | 40.74
n_138.82 138,99 | 39,13 | 39.27 | 39,35 | 49.51 | 39.92
P 13695 137,66 | 38,22 | 38.78 | 88.99 | 39.23 | 39.71
e 3690 |35.86 | 36.83 | 36.80 | 36.79 | 36.78 | 37,06
B 3598 13581 |35.63 | 35.42 | 35,32 | 35,29 | 36.48
I 13667 [33.12 | 38,53 | 38.82 |98.97 | 39.20 | 39.71
A - 36.48 [ 38.11 | 38.61 |38.82 139,13 | 39.74
on* | - 1378 | 3841 | 38,91 |39.12 | 37.43 | 40.04
= I = - - | 37.30 |38.19 | 38.81 | 39.64
== - - - - | 37.59 | 33.58 | 39.50
|P* - - - - - 38,78 | 39,75
i ~ = = - - - 39.29
=° [ < - - - - - 39.39
L n_ i 216 | 244 | 2,63 | 294 (3,096 | 3.42 | 4.36
P | 054 052 | 1.40 | 201 {2,432 | 2.36 | 3.86
< | e[ 2466 2454 | 2445 | 24.35 | 24,32 | 24.31 | 25,16
x| p 217 (192 [ 190 1.45 | 1.35 1 1.32 | 3.04
Ll 0341 T04 TA2 ] 178 [ 1.985] 2.35 | 3.59
p - 0.32 | 1.09 [ 1.50 | 1.837 2.2 | 3.44
= [n* - 0.32 | 1.09 | 1,58 | 1.834| 2,29 | 3.44
T ® - = - 0.59 | 1.084] 1.72 | 3.05
£ =" - - - - 0.622 . 1,32 { 2.54
.T”’ P = = - - - | 1.43 | 2.84
W TS = - - - - 2.41
=== - - - = - 5.35
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so rapidly with the increase of total energy after the threshold point, that it

soon becomes of the order of densities of the other members of the mixtures.

d. Summarz

The above results show that the critical density at which hyperons appear
is about three times as high as the normal nuclear density.
The general results for the whole region are shown in Figure 22, In order
to avoid over-crowding the hyperons in this graph have been grouped together in
a stripe. The rise of the numbers of these clements is so rapid (almest vertical
iines) right after the thresholds have been crossed that the effect of non-degeneracy
can be sofely neglected in the later calculations. The neutron Fermi energy is

about 510 Mev when n,~ 6x 10:38 cm"3

o« All through the region of the hyperon
phase, the electron number densities arc roughly two to three orders of magnitude
lower and the p~ meson number densities are about three to four orders of magni-
tude lower than the neuiron number densities.

Similar work is found in reference 13. The general agreement is satis-

factory, although there are minor small discrepancies in some of the numerical

resuits.

-3 EQUATION CF STATE FOR A DEGENERATE IDEAL GAS

We note that ail the particles appearing in the density regions below
cbout 1017 gm/c:m3 are fermions, Even af higher dersiiies thc appearance of any

bosons excest ncguiive pions would be very unlikely unless the total densities
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were to rise to unrealistically high values, Realizability in nature of even the
pion phase is rather questionable. In our problem of neutron stars the upper limit
set on possible values of pressure gives the upper limit of the density range in
which the equation of state of hyperon gases is properly applicable, As is demon~-
strated later, this limit is reached below the threshold for the appearance of pions.

In the density and temperaturc regions of interest (1012 <p< 10]7gm/cm3,
T< 5x10° °K) all particles present in the mixtures are in a highly degenerate
state. Therefore, the most general expression of the equaiion of state for a de-
generate gas of any fermions which apply to both the non-relativistic and relati=
vistic regions is exiremely desirable, First, in this section, such an equaiion for
an ideal gas (that is, without interaction forces) will be derived. In the next

section, the complete expressions with interaction forces will be considered.

kineti
Number density n:r}gu;:rgy density EK é:md pressure P for fermions are expressed
cs(:7)
=y Z (E)d l‘__‘/[e/%fa(d+s/"c)+ 1)
\ (3-26)
= P Ez(E)AE [ exp(d+ E/T)+ 1
TR LICLIA O )+ 1]
and P = % J:o log {1 + exp[— (d+E /"C )]}Z(E)OJE
. /
where £ = ( P7c™4- m* C*) g o 2 (3-27)

and Z (E} dE =the number of quantum states between E and E + dE.

Generally, it is more convenient to cxpress this in momenium space as

vV 2

Z(P) dP= —8—?;-— P dP = number of quantum siates with momentum between
h
Pand P + dP,
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E is the energy, P the momentum, m the mass of the particle, a = p/kT

and T = kT, whers p is the chemical potential. In complete degeneracy, 1 +exp
(a + E/T) =1 and all the states are filled up to Fermi energy Ef and terminated

there. In that case the above equations reduce to

3~3 7
n = E_TI._/L};/_E_ 5 thhzeCOShg de
O

0

. fe5 €
E- 3_17_%%_& J;’sinh 9 cosh 8 (cosh & = 1)d8 (3-20)

be5 o
P = g m 3C j sinh49 de
3 A o

with sinh 8 = P/mc, sinh 8° .=.P;:/mc where PF is the Fermi threshold

(3-29)
momentum, E =mc? (cosho-1)

After the integrations are carried out, they are expressed in parametric form as:

3.3
< ;
Ml W-L-—g sinh3 :t— (3-30a)
3 .?\ 3 4
T is the encrgy density including rest mess
€= Ginht-nK (3-30b)
P= (ishi-8siht +31)K (3-30¢)
2 3
where K = m4 c5/(32’!7“2’-53) is a constant, (3-31)

The new parameter t is defined as
b= 46, = 4sinh| (Pe/mo) (3-22)
The last five equations are extremely important in our problems and will be

referred to frequentily,
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I think it worthwhile to explain how the above equations are applied to
equations of state which are to be used in evaluating ordinary hydrostatic
equations (without general relativity) as well as to those corresponding to the
general relativistic equations.

in the former (without general relativity), the densities appearing in the
stellar structure equations are ordinary matter densities, For a pure neutron gas,
the density p s just number density n times neutron mass My, and (3~30a)

plus this relation gives us the expression for p in terms of t:

3.3
8T M%C (sinha_t}M
342 4

This plus (3-30c) then represent the parametric form of the equaticn of

(3-33)

n

state for a pure neutron gas without general relativity.

if we are deoling with a gas consisting of non-degencrate nuclei (A,Z)
and completely ionized highly degencrate elecirons, then the number density of
electrons and total matter density are reloted fo each other through the first
equation in (3-3) and using the notation used in (3-3), the density can be ex-

pressed in parametric form through (3-30a) as

3 3
—-————————gﬁ e C sinh3 _-_L‘;

34> 4

This plus (3-3Cc) give us the equation of siate for a degenerate eleciron

o = pH (3-34)

gas, We note that the paraiaetric cxpression of the equation of state for

a degencrate eleciron gas is identified with the cquaiion of state used by
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Chandrasekhar for white dwarfs (p. 415) of reference 7 if the parameter t

here and x there are related to each other through

i

t 4sinh-] X (3-35)
or x = PF / mc (3-36)

An equation of state in the form of (3-30c) plus (3-34) is valid in the outer
layers of neutron stars of sufficiently low densiiy where electron pressure is
dominant and where the general relativistic effect is unimportant.

In the greater part of neutron cores or hyperon cores, as we noted in
Chapter I, the general relativistic expression of the siructure equations (1-8)
and (1-9) must be used. In these cquations, the equations of state appear in
a form containing & (P) (energy density) instead of € (P) (matter density), In
this case, equations (3-30b) and (3~30c) constitute a parameiric form of the
equation of state for an ideal gas.

In this rescarch the last form of the equation of state (3-30b) and
(3-30c) for the partial energy density and the partial pressure of all the con-
stituent particles in mixiuras is used, for elecirons as well as for other heavier
particles, because in the low density limit, (3=30b) in all cases reduces to

(3-34) for elections and o (3=33) for baryons,

i1-4 EQUATIONNS OF STATE FOR A DEGENERATE REAL GAS

a. General Discussion

The equations derived in the previous section are valid if interaction

between pariicles is negligible. For instance, from the work in reference 11(b),
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we conclude that all the correction terms to the equation of state of a Fermi
gas of non-interacting electrons are negligible in the density range of interest
in this research ( pa'lo9 gm/cmz) and the formulae derived in the previous
section is perfectly valid for electrons,

The situation is quite different for baryons, This is because the normal

14 gm/cm3, while the densities we encounter

nuclear densities are arcund 3 x 10
in typical neuiron star problems are about 101410 1016 gm/cm3 . As the
density of a neutron gas increases above about 10]2 gm/c:m3 the attractive
nucleon-nucleon interaction potential begins to become effective and depresses
the total energy and pressure below the values of ideal Fermi gases. It is well
known that the nuclear potential in effect becomes strongly repulsive in the ex=
tremely high density limit to prevent collapse (for p>10]5 gm/cm3)a The exact
details of the behavior of nuclear potentials in this range (higher than nuclear
densities) are not yet weil known, However, various models of nuclecr potentials
in different densiiy regions have recently been constructed by different
oufhors(.] o), (B1), (52),(59) Some of these models which are pariicularly inter-
esting in the problem of neuiron stars are discussed in the nexi sub=sections b to f.
Before that, a brief outline of how the equaiion of state is to be modified
in the presence of such interaction forces will be considered. In general, if the
inferna! energy is expressed by U and the matter density by p, the corresponding
multiplying it by

pressure is obtained by taking the derivative of U with respect to p and by /

p/V where V is the total volume of the system and the whole expression is
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evaluated at zero temperature, namely,

P:(ia_t_l- (337
v QP T=0

In the derivation of parametric forms of the equation of state in the previous
section, the energy term consists of kinetic energy and rest mass energy, and

the pressure is that due to the kinctic energy. Therefore, the equation of state
for a real gas is obtained by adding the additional pressure due to the interaction
poteniial expressed by equation (3-37) to the pressure due to kinetic energy ex-
pressed by (3-30c), while the interaction potential energy density is simply added
to (3-30b) to obtain the total energy density. Then, the two equations for P

and & represent a parametric form of the equation of state for a degenerate

real gas. In this case, U in (3-37) stands for the interaction potential,

At the present stage, the behavior of nuclear forces at high particle
speeds is not well known. These forces may be dependent not only on mutua!
distances but on particle velocities and spins as well, or they may involve
tensor foces. A serious problem scems to be that many theories which appear
to work so successfully in low energy regions fai! very badly in high energy
regions, although some successfu! attempts have been made recently, such as a
work by Serber(f::s) Regarding the interaction forces between hyperons, the
situation is even worse. As has been stated in reference 54, "the difficulty to
explain even the most predominant feaiures of high-energy collisions remains
as greai as sixieen years ago." Faced with this fact one may fecl that the problem

must be abandoned until further progress is made in the fundamental theory.
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However, it is still thought worthwhile to try to construct models as realisti=
cally as possible. The results of this research seem to indicate that such an
effort has not been in vain.

Qualitatively, we expect that with an increase of density, the inter-
action potential first decreases, reaching a minimum when the distance between
particles is of the order of the pion compton wave length, and then, for
p 2 10]5 gm/cma, it begins to increase rapidly, The introduction of repulsive
forces between baryons at close range leads to increased pressure which increases
the mass of the configuration. Therefore, the maximum mass limit is expected to
be larger if proper interaciion forces are faken into account.

Since the nucleon-nucleon potential is more easily investigated than the
more general problem of interactions between baryons, and since it appears that
the interactions between hyperons are the same strong interactions which bring
the nuclear forces within a nucleus into play, potentials which are constructed
to fit nucleon-nucleon experimental data arc used in this rescarch as the average

potential fieids which apply to all baryons.

. Skyrme Equation of Statet710)

A simple three-body effective nuclear potential has been constructed by
Skyrme which represents quite well many features of the mere complicated many
body approach. In this model, the total energy density including rest energy is
expressed as

€= 25 +7.98x107 524 0,79 % 1076 5331381 x10% 2 (3-380)
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where p is the ordinary matter density in gm/cm3 and & is expressed in
ergs/ cm3.
The internal energy (without rest mass) of the system of N nucleons in

a volume (N/6.025) x 1023 5 is then given by

U=17.98x 10 ;34079107731 381 x 105,] Nx102/6.025  (3-38b)
From (3-37) and (3-38b) the pressure is

P=5,32x 10° %3+ 1,632 x 107 x¥3 1,381 x 10° o2, (3-38¢)
P isin dynes/c:mz° The first term represents the kinetic energy contribution of
the neutrons and the other two terms represeni the most imperiant contributors

to Skyrme's mean effective potential.,

The above derivotions are based on the non-relativistic approximation.
Equations (3-33a) plus (3~38c) then represent the parametric form of the equation
of state for a real degenerate neutron gas in a non-relaiivistic region. The re-
lativistic Skyrme equation of staie is obtained by a simple modification, It is

summarized below

€4) =K(sinh £ -  + 23,9 sinh® 4 - 10.1 sinh® t)

t 8 6t (3-39)
P(t) =K[(sinh t - 8 sinh—-i + 3t)/3 + 39,7 sinh 'Zti- 10.1 sinh 71

where l\=m4 5/32:72 3

j_r_=s':’nn (P/m),P— (3= 2 173, ]/3
%

¢, Saakyan's Equation of State for a Real Baryon Gas (14)

Because of the scant knowledge we have of the physics of this problem,

4
Ambartsumyan and Sackyan suggested(] Y q somewhat arbitrary simple form of
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potential
V(n) =3.2 x 10-83 n2 - 6.4 x 1070 (3-40)
and assumed that each baryon experiences this same potential, where n is the
total baryon number density. The formula is chosen so that at n>>1 O40 cm-3,
V(n) exceeds the kinetic energy of the particles including the rest energy, and
at lower densities it coincides with the depth of the potential well of ordinary

nuciear matter. This potential form is constructed to provide a qualitative fit

to the available daia. Their composite equation of state is:

F=E +nV (N P’—'R*‘%Z% (3-41)

4 .
where M‘k -t - -t
s Ka SH(J8 Joumh tr - Ta)
+ Ny M C A L ()
P =K.y dn(MNenht,~8aind T+ 311)/3
o~ K%A‘RE' Mﬂ) 'k 4
oo %, S (3w £5)
The extra factor [ ak(Mk/Mn)4/21 is the result of expressing the constant K K

of particle k in terms of K n of neutrons. k runs over all fermions present

except neutrons, M, =ncutron mass, and My = mass of particle k,

(11b)

d. Salpeter's Equation of State

Salpeter investigated the possible forms of the equation of state for a
real neutron gas through a semi-empirical c:pprocch,(] 1b) instead of density P
/
a parameter r, defined by R=r A s used, where R is the radius of a

nucleus of mass number A. r, is expressed in fermis (10"']3 cm) and in the

case of neutron gases is relcted to ordinary maiter densif through
Y Y g
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310" gm/cm® (3-43)

@= 396 r,~

He found the energy per particle in a low density region in analytical
form by using the ordinary phase shift approximation and the effective range
theory, and concluded that there is no bound state in this region,

In an intermedicte range around normal nuclear density, the total energy
per nucleon E is first expressed as a function of rorz(= Z/A), and three
constants which are evaluated by fitting them against experimental information
on "ordinary" complex nuclei. For this purpose a simple form of semi~empirical
mass formula is used:

- E(z A) =a - ap (1-222 +ag ATV/3 4 q, 72473 (3-44)
where ay, ap a3, and ay are constants for binding, symmetry, surface and
Coulomb energy terms respectively, Because of the uncertainty in the symmetry
energy coefficient ap, four possible velues of a, are used. The analytical ex-
pression for encrgy per pariicle Tor a, =29 Mev for ordinary nuclear matter
( x = 3) and for the pure neutron configuration (z =0) are
NESS) =ro'2[-00763+1&065 ro"] +0.302 r°'2+0,;459 ro =1.712 ro]'2]129.0 Mev

and Efr,z:0)= 1y 2[0.157+ 0,710 1 140,321 £ 24+0.697 r 31,368 r;‘°22329°§) Mev
3-45

Pressure is then obtained from

Plro) == (47 1,371 d E(r) r (3-46)
For the lowest value of a2(22 Mev) the neutrons are bound. For ap =26 Mev, the
energy never becomes negative but there is a local minimum near r, =2 fermis,

For the rest of the models (ap =29 and 34 Mev) the neutron matter is not bound.
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The model of a, = 34 Mev has the highest values of pressure and Salpeter con-
cluded that this case is the most probable,

In the high density region he assumed a static repulsive core of radius
0.45 fermis and applied the "cell-method" to trect this region. According to

this method, the potential energy becomes infinite for ry =0.25 fermis.

(8,60)

e. Equation of State of Wheeler, Harrison and Wakano

Their equation of state is plotted in Figure 10~1 of reference 60. At the
lowest density limit, the matter consists of solid Fe56 of density 7.8 gm/cm3;
therefore its compressibility is very small, and the P/p vs. p curve is almost
vertical until the iron atoms are pressure ionized. Then follows the region of
atomic physics, The equation of state corresponding to this region was obtained
by correctirg the Fermi~Thomas atom model for pressure effects according to the
theory of Feynman, Metropolis and Teller. Vvhen the pressure ionization is

5/3, and then, forp ~ 107 gm/cm3, as

completed pressure increcses firstas p
p4/3. The equation of state in this region has been constructed by Chandrasekhar
(Chapter IV-Za). In the region 107 < p< 10”gm/cm3 electrons are captured
and the stable nuclei shift from iron to Y]22 in the mcnner described in Chapler
-3b. For p 2 1012 gm/cm3 the main composition is neuirons, Wheeler et al
did not make a detailed vnalysis of the complexity encountered after the nuclear
density has been reached. They used two differeni approcches in the high

density regions: (1) the simple cquation of state of an ideal Fermi gas with 1/9

electrons and protons and 8/9 neutrons, and (2) the hard core approximation, that is,
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it was assumed that nucleons act upon each other with a hard core effective

potential at a distance of about 0,5 fermis,

f. Levinger-Simmons Equation of State

One of the most interesting quantitative works on the neutron-neutron
potential in the intermediate density range (near the normal nuclear density)
has been published by Levinger and Simmons.(sz) Since their work covers the
most important region of density for typical neuiron star models, the potentials
suggested by them are extensively used in this research. In the following their
potentials will be introduced first and then equations of state will be constructed
using these same potentials,

Instead of using matter density directly, the Fermi wove nunb er ke is
used as the parameter representing density. kf is related to Fermi momentum
through pg = h kf . At this point, it will be convenient to give relations between
different parameters used by different quthors to express density. According to
the definition R =r A /3, for neutrons A =1 and r, is the radius of the
average volume occupied by one neutron. Let us denote this volume by v, and
the number density of neutrons by n. Noting that Fermi momentum is related to
number density by P =hkg=(3 7 )]/3‘5 ]/3 the relations between neutron
number density n, the avercge separahon o cnd rhe Fermi wave number kg are

3 - 'f'\’+
LS 3T (3-47)

This leads us to a s»mple relation

{/C_g-‘—' L7112 /7, (3-48)
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On applying the relation p =M, n further, we obtain (3-43} as a relation between

p and roe From (3-43) and (3-43) the relation between p and kf is
13’ 3
“f

where kf is expressed in f-]. (f means fermis, 10713 cm.)

p = 564 x10 (3-49)

These relations are exiremely useful when the results of the work of
different authors are compared.

In the Levinger=Simmons potentials the following assumptions are made;
the neut ron-neutron potential is we!l-behaved and velocity dependent, charge
independence is valid, perturbation theory is applicable and the second-order
energy in the perturbation expansion is negligible in the intermediate density
region. The last statement is verified in the aforementioned reference. By the
assumption of charge independence the result for the neutron-neutron potential
can be fitted to the experimentally determined ones for proton~proton phase shifis.
This was done by Levinger and Simmons but they reglected to correct for Coulomb
effects, The density region in which 0.5< k¢ < 2f-l has been covered, Two
different velocity-dependent potentials have been adjusted io fit the observed
nucleon-nucieon 'S and 'D phase shifts, Ve'ocity dependence is assumed for
two reasons: (1) it is necessary to fit the observed Is phase shifts and (2) it
prevents the collapse which is familiar in the nuclear matter problem.

Three potential forms are used, with characteristics os described above.

They arc convenienily called Vefr Vp and Vo defined as
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=-421 (3-50)

(i Qg =-VT,(R)-(REXN/MC)S(n- &) -(A/M)P T ()P
V) =51Mev, (a<h) Jz(/t):i,{/?(c) (3-51)

=-0PEP, (2>b) =g, (n=ED

=0 ,(2>c)

OPEP == 10.83 exp (~0.708 r)/0.703 r Mev, b=1.6f, ¢ =0.5f, A == 1,64

& ‘ 3 VES
() ==V T, (1)+ (I/M)IPPw )+ WD P2
V3, () (142 w (N 112 e 4 T LB

3-52
W) = Sexp(-3.67) M[1+ QW(/l)jz ( )

vq fits the accepted low-energy parameters and gives Is phase shifis in rough
agreement with experimental data but gives much too small values for ]D phase
shifts. For kf b > 2, the region of most interest to us, the ]D phase shifis start

to become important. Because of this, the potential Vd is not used in this research
although it is the simplest in form of all three in that it has the shape of a simple
square well,

v . has four adjustable parameters Vor b, ¢, and A, and gives a satis~
factory fit to the ]S ana ]D phase shifts from 20 to 340 Mev., OPEP is the one
pion exchange potentiai which becomes effective for r> 1.6 f,

vy givesagood fit to ]S phase shifts and a “fair fit to b phase shifts,
This potential also gives a good fit at low energies with effective range =2.65 f
and scaitering length == 23.6 f. The units used in (3-50) through (3-52) are:
energies in Mev and lengths in fermis f. The three given above are examples
of non-local potentials, expanded in powers of p, retaining terms only up to p2,

and adjusted to the two-body experimental data up fo 340 Mev (lab system)., A
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rough guess as to the potential in (triplet) odd states is made such that the static terms
are weakly attractive in the odd states and the velocity~-dependent terms are the
same in all states. The tensor and spin-orbit forces are not included.

The first order energies are calculated in the following manner: The total
energy through first order E is
A . A
E= <P IH iP>+{PI1VIP> (3-53)
where H, is the kinetic term, treated as the unperturbed Hamiltonian, and ¢ is
the perturbation given in equations (3-50) through (3-52). levinger and Simr.ons

A
used the non-relativistic exprcsrion for the kinetic energy term Ho‘-'-'P2/2m and

h2%2

obtained <§IHOI@> (5 )N

where N is total number of particles.
The perturbation term is expressed as a combination of four terms Vo r Vs

w,, and w s representing the ordinary static, the exchange static, the ordinary

velocity-dependent, and the exchange velocity~dependent terms, respectively. The

preceding quantities are determined by the foilowing formulac:
for v

BV, 31y = - (FTVeA) [T %

<3 (W|-VyJ, (fl,l@éﬂ)) ~(4T1V, /.;JJ 3, () in /.kr/2l<r)r2drforve,
(3-54)

BN M)P@(n)PI@(ﬁ)y(‘*”‘ A)k (L) an ¢»

for o of v and Vg o Yo of vy s obtcme by the same integral if the term
- A Jz(r) is replaced by 2u(r). v, is determined by a similar integral in which

3.
@ (r) in the last expression is replaced by QZ (=r). in the above,{L=vN = % Trg N
For a Serber force, there are 1/3th of N2 pairs interacting in cven (spin-singlet)

states. The four potential terms for a Serber force are then
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R
vo=-(Vo /o) T, O, (2R DIV v,
whers £ () = - (12/4?) s.ng + (Y~ 143) cos g,u J/g +i2Y*
== (Maom)(4 /M)‘k«f f Ty (NPT for Ty
. =(4 k/gwM)f.»JH)@(Q&; DM/ A3 for v Ve
where 5 (4)=(=30+3607 y2) siny
+ (3y -1+ /g+36}2§,>c03 y - (384 + 360/8°)

“ and @_ for a potential CY are obtained by replacing = R.J'2(r) in the !ast

(3-55)

two expressions above by 2c(r).
The ordinary integral of the static ferm Vo and ihe ordinary integral of the
velocity-dependent term (W, are evaluated from the first and the third equations

above for the ecch of the three potentials QC(//\"B , ff?, » They are given below.

.Potential v Potential Ve Potential v
1)
Static v_ (Wiev) | = 4.12 ko ~ 3.02 k.S 72,02 I3 (3-56)
o i f f f
edep. ¥, (v, L0k T 0045k | 0.BkO| (kpin ol
i I

No such simple expressions are available for exchange integral terms. However,
analytical forms are deduced for the exchange integral of the stafic term ve of

the potential vy and v, in the form:

B
Vg == (v° /21T f5(2 k¢ b) where (3-57)
frly) = 4 cos y/y3 + 4 sin y/y3 + cos y/y + Si{y)* - 3/y - 4&/)/3
Similarly, the exchange integrals of the velocity dependent term of Gc( and /\)B

are expressed analytically as

*See reference 55
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- AN K2
‘ w e ™ (ha kf /2‘1'M)f4(2kf c) (3-58a)
f4(y) =72/y5 +12/y3- 72 cos y/ys- 72 sin y/y4+24 cos y/y3+3 sin y/y2
and similarly for Vy 9
W, =(3c % ﬁ2/41’r M5 (2 ky/5)
(3-58b)

f5(y) = Y - tan”! y +(1 )( A+3y A ( +y2)--;¢)

The above results show that all four terms Vo ¥or Ver and Cv are functions of kf

only but for ve and & the dependence on k¢ is not simple at all, In reference
52 numerical values of v, and ¢, for three potential modcls Ve Vg and vy for
different values of k¢ in their range are tabulated (Table IV of reference 52). To

take care of different exchange mixtures each termof v_, &, v, and w s

of 7o’ Te
multiplied by an appropriate coefficient. These are defined by
. cp =1 +3(V-/V+)=1.3 where\-\7/—-_; = 0.1 is the ratio of static forces in odd and
even states,
co =1+ 3 (A=/AH) =4 where A -/A+=1,
¢ =1-3V - /V 4=0.7 where V- /V +=0.1, and (3-59)
c2' =1=-3A-/A +=- 2 where A~/A+=1 for Vor “or Ve and &), respectively.

The energy per nucleon in the final form is then

E_3;42,.2
€s N—g( kf/ZM)+°1 Vo TeQ Wy ¥ eyl vg teg (3-60)

—

25keZ - ak+ 5k o+ e v (k) * ept w (kg)

where @ and { are constants to be determined from ¢y and ¢, given above
and Vo and e, given in (3-56)

The first term, the kinetic energy term, is proportional to kf2 (non-relativistic);
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the second term, the ordinary integral of the static term, is proportional to kfs;
the third term, the ordinary integral of the velocity=dependent term, is proportio-
nal to kf5; while the last two terms are more complicated. As the table in (3-56)
shows the static term Vo is negative, representing the aitractive force, while
the velocity dependent term W, is positive, and represents a repulsive force for
large kg, namely, for high density,

For very small kg, the kinetic encrgy is dominant and all the rest, coming
from a nucleon-nucleon interaction, arc negligible. With an increase of ke at
first the second term depresses the energy due to the atiraciive force but gradually,
with a further increase of kg, the third trm takes dominance over the second and
energy goes above the value for a non=interacting Fermi gas. The exchange terms
are equal in mognitude to the corresponding ordinary integrals at low density, that

is, v¢ ¥ v, and & 2 (J,; but become negligible of higher densities, that

o
is, 1| Ve | K vy | and !C*Jel<<IOJ° | as kf - .

Ve, VB and Vo~ asda function of k¢ are tabulated in Table V of
reference 52. They agree with each other up to ke = 1 1, but Ve, devictes
frem the rest sharply for higher values of ke o The general agrcement between
s and Vy is good for ke < 2. This shows that the shape independence is o
longer valid in the higher density regions. This is reasorcble because k =2
corresponds fo a density of about 4 x 1014 gm/cms, which is somewhat higher
than normal nuclear densities (~ 3 x IOM gm/cms). That is, we are within nuclear

force range and the exact shape of the potential should give a large effect.

Because of the poor fit of vy in the density region of interest, vy is
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discarded, and VBr Vo and a combination of ¢! and vy are used in this
research. From the above results (3-60), (3-56) and (3-57) through (3~58b),
with the help of Table IV of reference 52, e = E/N, the cnergy per particle,
is computed. Energy density é is then obtained through the relation

¢ = € n(where € = _N.) (3-61)
n is the number per unit volume. The equation (3-37) for pressure is modified
in this case as

P = n? 2€ (:-62)
?2n

It is desirable that the kinetic encrgy be expressed in a more general form which
)4 P

cpplies to boih relativistic and non-relativistic coses. Then the first term of
(3-60) is replaced by the more complete expressions given in the previous section
(111-3), The final expression of the equation of state for the Levinger=Simmons

potential is then represenied by

-
€=K (sinh t-)+7E 1’% + ﬁ‘f?.;:!' 0.7 Ve-2 W@3 C (crgs/cmS)  (3~63)

. 3 [
P= Jé 6(sinh t-8 sinhi+3~&)+ﬁ(-30(f( + 58 k‘j‘)@ ...}- Pex (dynes/cmz)

where P =n*C (0 73__8 Z%My)gj

4
K=m c5/(3fr 2 A3)=51{7xID ( > (dynes/cm?)
where m is the mass of the particle in question and m,, is the neutron mass.
C is a conversion factor from Mev to cgs units
C=1.6021 x 10°° ergs./Mev
a=1.3ay p=4 a, where
a= 3.02, a5 =0.045 for vy in Mev,

(3-63)
ay = 4,02, ay =0.28 for VY in Mev,
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ke and t are related through ke = r—:is—sinhzt, and n and ke through (3-47),
From the above information, pressure and energy densities can be expressed as
a function of the parameter t alone and they constitute a complete expression
of the Levinger-Simmons equation of state which is used in this research.

It is extremely time-consuiing to calculate Ver 4 @V/@n and
©4//®n analytically through the use of equations (3-57) and (3-58). In this
research, instead, a graphical method has been used. Namely, v, and @,

tebulated in reference 52 have been plotted against kg as shown in Figure 23

and the slopes have been measured. The table listing a set of discrete values of Ve,

‘ 30 . . .
w o¥e  and £ thus obtained graphically has been used as a basis for
€s 2hn 2n !

interpolation in the region where ki < 2 and for extrapolation for the region
ke > 2. That extrapolation in this way for higher density regions is justified
f p y y :

and W, are negligible

can be seen by noting that the exchange terms Ve A

compared with the ordinary terms vo and & for k¢ 2 2

g. Results

The resulis are shown in Figure 24, where the total snergy per nucleon
(including both kinetic and potential energies) is plotted against density. The
curves marked vg and vV~ correspond to ihe equation of staie with the two
different kinds of potential used in this section. In addition, the equations of
state of Skyrme, Sa'peter and of non~interaciing particles (kinetic term only) are
shown for the purpose of comparison. Even the highest pressure (ap = 34 Mev in

Section lI=4d) in Salpeter's models is considerably lower than that of all the



Energy per Nucleon (Mev/Particle)

30

T 1 1 I 1 1
Exchange Potentials per Nucleon
for Static Terms Ve and

Velocity Dependent Terms we

| 2 3 q 5 6
Fermi Wave Number Kf(f-')

Figure 23

186



100

10

Energy (Mev /Particle)

187

T
A
Noninteracting Pid
Particles s I
\/ //
7
< P
Id
e
V4
7
/7
7
7 —
/\Solpe'er
1 /7
P4
7/
7
P d
P d
P d
P d
P
rd
/I
r'd
P d
P d
rd
P 1 |
12 13 e
10 10 o) 10

Density (Gram /cm3 )

Figure 2l



138
other models but this is not surprising as can be seen by noting the large uncer-
tainties inherent in the semi~empirical approach used in Section IlI-4d.

Among the two poientials VB and Vy of Levinger and Simmons, the
difference is small in the region of attractive forces but Vy has a much stronger
repulsive effect in the higher density region, This is due mainly to the larger
value of the coefficient of the repulsive term, § or ay in (3-63") for Vy os
compared with those of vg - VVith no nuclear forces all curves would coincide
with the line marked "non-interaciing particles." The over-all effect of the
nuciear potential in most of the region shown in Figure 24 is attractive, but the
graph indicates that near p ~ 10}5 gm/cm3 repulsive terms are already becoming

dominant over the rest.

[11=5 RELATIVISTIC LIMITATIONS ON THE EQUATICN CF STATE

To explain the behavior in high density regions, it has been more or less
customary fo use the approximation of an incompressible fluid, that is, a hard
core repulsive potential which goes to infinity obruptly at a hard core distance
(varying from about 0.2 to 0.5 fermis depending on models), Matter becomes in-
compressible and the pressure can become infinite at a finite density in such
models,

In reality, the nucleon core is not ideally rigid and the infinitely large
repulsive force acting at a fixed distance may have to be replaced by a more
realistic mode! of the interaction, such as the repulsive terms of the interaction

potentials presented in the last section,
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However, it is also known that the theory of relativity prohibits the
pressure from going to infinity at a finite density. The generally accepted
limitation to the pressure imposed by the relativistic principles has been
P ?3& (3-64)
where P is the pressure and € the encrgy density. The inequality sign corre-
sponds to a system of free non~interacting particles with non-vanishing rest
masses and the equality sign applies only to electromagnetic fields.
Using the notation of reference 56, the derivation of (3-64) by Landau
and Lifshitz is summarized below:
The energy-momentum tensor for an cssembly of non-interacting particles

has been shown to take the form (p. 89 of reference 56)

- aX; d X4
.Ttk—uc 75 dt where

M =2 /}’HA (S (/‘l_ - /Z—A) is the mass density.
In particular the diccona! space components are reduced to

T = -Zm,C* ICEENI A/c ) <o

Thet is, T . becomes negct.ve for non-vanishing masses and a particle velocity

v less than the velocity of light, When my =0 or v, =c, which corresponds
to photons, T;; is zero. There is no real solution for Tii >0, The space com=
ponents of the energy-momentum tensor of a macroscopic body have been shown
(P~ 93 of reference 56) to be

T.. =- £ + 3P,

Combining this with the cbove inequality relation, we obtain (3-64), That is, the
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pressure should never exceed 1/3 of the energy density for non-interacting par=
ticles of finite masses and the pressure is equal to 1/3 € for photons, We immediate=-
ly notice that above derivation does not prove that the same limitation should apply
to interacting particles also. Zel 'dovich<57) proposed that relation (3-64) may be
violated in the case of strongly interacting particles, and that a more rigid limitation
which should apply to any system is
Pg € (3-65)
This absolute limit is set by the fact that “the speed of sound must not
exceed the speed of light." The speed of sound is given by(ss)
p2= 2 3p/2¢e (3-66)
where D is the speed of sound, ¢ that of light, and Pand € are pressure and
energy density as before, f (3-64) is valid, then DL /3, but if P €, (3-66)
leads us to D < & ., Since no velocity should exceed the velocity of light accor-
ding to the theory of relativity, the limitation P < € should be an absolute one.
The possibility of the violation of the condition (3-64) arises, for instance,
for the case of a fermion field interacting with a boson field. In general, the
Lagrangian which describes the ficlds in interaction is the sum of the free field term
and the interaction term. If a spinor ficld (/ interacts with the scalar boson field
(]5 through a direct coupling term, the total chrangicn(sc‘)) is given by:

~ - .
0(., = "’an}u V\// m‘r(i('-T.

where - L, Dy b -
Ly yp- 3 (09X o,y
L= W= (VM) ™ 20—, A
Lot N r"v"-)//‘ )
N W= —-,i ( i ({) - (;/,( \/, /
ro_ AR e |
S A

t-1
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["is an operator which can have any of the following forms:
[ - I)Y'u) ( Yﬂ?f,/, ((G);{, Y5
G is the coupling constant for direct coupling, u is the inverse compton wave
length mc/A and m is the mass of the particle associated with the field.
The variation of oC with respect to the boson field 95 lcads us to the field
equation for 96,
@O+ d =-c7y (3-57)
Then, E F'gb acts as a source term for the boson field ¢, just as the current acts
as a source for an electromagnetic field in Maxwell®s equations. !f the source term
is independent of iime, there exists solutions of (3-67) which are independent of
time in which case [J=- V2 In particular, for a point charge at rest at the origin
the source term on the left is just of a delta function type and we are led fo a simple
solution of a Yukawa potential type
¢ =g e'M/ /T (3-68)
where g is a constant corresponding to the interaction charge. Such a potential
may represent the interaction of the fermion current with a vector meson field and
may well explain the repulsion between baryons in the ultrohigh density regions,

The force between two charges under the po?on*ia! (3-68) is

| Fal=-1 34P- '30‘ ( / > (3-69)
-/J 12

0(/1,‘
Och 3 //2 } (3-70)

. /7 |2
the corresponding inferaction erse'gy per each pair is then
If we note that an interaciion potential of the above form apglies to every pair of
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particles, we find that the energy per particle is
E =M++% [Mapdy=M+2T N /> @
where M is the mass of a particle, n the average number density and g is
its charge, p =mc/# as before. In the above, ¢ has been set equal to 1. The

energy density and pressure are then

E=ME =MnN+2T Q»z/nz S u* (3-72a)
-2 1 = Z(nz 2
P= ,5% m- =273 /, M (3-72b)

From these two equations it is clear that for a finite number density n, P < €
while as n -0, P~ £, but it never happens that P> €.

it has been demonstrated above that for baryons under repulsive forces of
the type (3-69), which may occur at ultrahigh density, the main pressure comes
from the repulsion among baryons through a field of vecior mesons and the pressure
due to Fermi energies is of no importance as the density goes to infinity.

Generally, the energy density has a power-law dependence on n of the
form € = an” where v is some number and a is a constant, The energy per

v-1

particle is then E=an” ', and the pressure is

P=dEmr=()-1)am’= (V-1) €.
The asymptotic behavior P = .§.. corresponds to v =4/3, while P= & corre-
sponds to =2, Inthiscase, P= L =a n2 which is consistent with (3~72q)
and (3~72b) as n —~ o,

From (3~47), nec. kfg, and from (3-63), & -~ a n8/3 ond P -*-g» a n8/3

as n goes to infinity (where a is a constant), This means thai for the Levinger-
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Simmons equation of state, P — % ¢ and D~ @- ¢, and the speed of sound
does exceed the speed of light. Equations (3-38a) and (3-33c) reveal that
P p 83 and P> € at p=w for the Skyrme equation of state. It has been
pointed out by Zel'dovich that the asymptotic equations (3-72a) and (3-72b) start
to become valid just about at the point where Salpeter's “cell~method" (Section
111-4d) starts to become applicable. The conclusion is that all the proper models
of the equation of state for a real gas (with repulsive terms) eventually exceed or
approach the limit P= €. As soon as this point has been reached, the equation
of state must be switched over to the absolute limit of P= E , After that, the
question of which baryons, and how many kinds of baryons, are to be included in
the mixture has no effect on the equation of state, because in this limit the pressure
depends only on the total baryon number density n, and not on the properties of
the individual components.

The Levinger-Simmons equation of state (which has been used in this

16 10165 gm/cm3, and

research) reaches this limiting point at around p ~ 10
that is why the inclusion of higher excited isobars of subatomic particles is nof‘
necessary (Section 1l1-2) in this research. This is far below the threshold for the
appearance of pions and because of this the pion phase has not been included in
the final composite equation of state which is constructed in the next section.

It was noted earlier that the repulsive forces acting at close range may

lead to a considerable increase in the possible maximum limit on the total stellar

mass (Section 1ll-4a) over that for the case where the equation of state of non-
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interacting particles has been used. Due to the upper limit set on pressure by
relativity as discussed here, this increase in the total mass of stars and the point
of the maximum mass may be considerably limited. This problem is further in-

vestigated after the neutron star models have actually been constructed.

llI-6 COMPOSITE EQUATION OF STATE

The final equation of state for mixtures has been constructed as follows:
It has been noted that the interoction forces are negligible for leptons, and the
equation of state for an ideal gas has been used to obtain the pariial pressures
and partial energy densities of electrons and muons (equations (3~30b) and
(3-30c)). It has been assumed that all baryons present are under the same potential
field of the type vg of vy the Levinger-Simmons potential, which is a function
of total baryon density. Therefore, ke appearing in equation (3-63) correzponds to

the total baryon number density. T'ne actual formulce used are summarized below:

e an"‘ ’m‘é>(W‘t‘ 7:‘->+FN(’YIﬂ’n.

(3-73)

_ Ka a; n "
WS, ( ‘L\J(an/n -3Mt+34‘ )+7’1 ovm) (3-74)

where the summation is over all particles (both leptons and baryons) present, We

have noted that the appearance and the abundance of each particle is a function of
the total baryon number density n. Therefore with an increase in n, more particles
are included in the first terms of the above summations. cJ./2 is the ratio of statisti=

cal weight of the jth particle o the ncutron.
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’ 5' 2 - 5—
K, = 'Y)’l: C /(327T «'K"’)—- 51T x 103 c!ynes/cm3
GJ =(2IB‘ -H) , Ié‘ is the spin, and m,, is the neutron mass,
t i is related to the number density of jth particle through

3 3
,H‘J‘ = W sinh3 E. (3-75)
343 4+

The potential terms are

\/(’n)‘: ("O"hz'}' B’k_z’f 0\7\@ -2 We> C (ergs/cms)

A 3-76)
MM (k% 58K ) +n(0.70Ve - 22PN 4
‘ (dynes/ cm?')
where kf = (31T 2 n) /3
n=3 n g summed over all baryons { which cre present, (3-77)

Q2
C, = 1,602 x 1676 ergs/Mev.

aand B are constants given in (3-63'). Vo (,Ue,'_a'_\jéf , 3.&; have been determined
PN N

by the method outlined in the last part of Section 1il-4f.

rirst the relativistic parameter t, of the neutrons has been chosen cs a
free parameter. Then n, is found from (3-75). The abundances n; of all the
particles j which are present in different phases have been already calculated
in terms of n, in Section HI-2, \Vith the help of (3-75) each TJ can then be
converted to 1:] . These values are substituied in (3-73) and (3-74) for all par-
ticles present to obtain the first torms of energy density and pressure. On substitut-
ing the partial number densities of all baryons ny into {3-77) above, the total

baryon number density n isfound. Then the potential terms of energy density and

pressure are determined through the above equations (3-76),
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The total matter densitics are found from the equation
P == m m, (3-78)
m” T
In this way the composite equation of state is expressed in terms of a parameter
ty for neutrons which is related to neutron Fermi momenium Pe through t, =4

-1 P
sinh ] (—E_) and to the neutron number density through (3-30a).
mpc

In the higher density region where abundances cre calculated by the
method of Section 111~2, the number densities of all elements arc expressed in
terms of neutron number density and the above form of the equation of staie
with t, s a free parameter is perfectly valid. However, in the much lower
density region of heavy ions and electrons of Chapier 11, abundances are expressed
in terms of matter density P At zcro-temperature no neutrons are present for
densities below about 3 x 10! gm/c:m3 and the parameter t, itself loses its
meaning.

Furthermore, the problem still remains regarding she intermediate region.
To explain the situtation, number densitics of different elements are plotied as a
function of matter density in Figure 22, In this graph let us focus cur atiention
on the electron number density curve marked e”. The part for density below
about 3 x 1011 gm/cm3 was obtained from Table 6, ihe resulis of Chapter Il, Let
us call this region (I}, The part for 9> 3 x 10]3 gm/cm3 was obtained by the
method described in Section 111-2, Let us call this region (1il). The intermediate
region where 8 x 101:3 gm/cm3 >p>3x 10” gm,/cm3 will be called (if). The

border between region (1) and (I1) is marked by (a), end that between (11) and (11)

by (b). In region (1), we noted that electrons are capiured by heavy nuclei when
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density increases. The nuclei containing too many neutrons will eventually
become unstable and disintegrate into free neutrons. At a density slightly higher
than (o), the elements near the peak at Eg R 23 Meyv, such as 385'1220 , will
coexist with free neutrons. By the time we come to the border (b), all the heavy
nuclei are expected to disappear leaving only neutrons, protons and electrons
in equilibrium. The exact behavior of the transition of elements from the group
of heavy nuclei, electrons and neutrons at (a) inio the pure neutron-proton-electron
configuration at (b) is quite complicated but the principles which govern the con-
dition of equilibrium are the same in regions (1), () and (111), namely, the
conservation of tota! energy, charge, and total baryon number including both the
bound and the continium states. Also we note that a discontinuous chunge of ion
numbers is not allowed. This means that a sudden change of heavy elements of
(Z = 3B) to protons (Z = 1) at « fixed density does not occur in reality. !t is
most reasonakie to assume rather that the charge Z changes from around 38 to 1
from (a) to (b) (in the density renge from 3 x 10! gm/cm3 t0 8 x 1013 gm/cm3)
in a smooth way. In this case the ionic charge Z is expressed in the followirg way:
Z =1+ 37X where Xz (&= P8, )

where 07 and f5 are the matter densities at (a) 2 =3x10'! gm/cm:3 and
b) pp=8x 10'° gm/cma, respectivelys,

Actually, electron number density increcses slighily as we go from {a) to (b)
with an increase of neutron number density, but an order of magnitude analysis reveals

this rise is quite small and not appreciable in Figure 22, This indicaties that the
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greater part of the extra density as we go from (a) to (k) takes the form of
neutron partial density. Figure 22 also indicates that there is a rise in the total
ion number density as the ionic charge changes from about 38 at (o) to 1 at (b).
At zero temperaiure region (1) is an ion-electron phase with no neutrons.
With a finite temperature a sharp rise in neutron number densiiies near (a) occurs
(from Chapter 1l); the lower the temperature, the sharper the rise. In region (ll),
positive fons (heavy nuclei and protons), electrons and neutrons are present where
the relative concentrations change rapidly from (a) to (b). Up to this point, it
has been most converient to express everything in terms of matter density §e
because the abundances Rpr Rr etc,, have been expressed in terms of P in this

region. t, and t, are found from n, and n, through (3-75) and they have

e
been substituted into the equation of state (3-73) - (3-74), For ¢ >8 x 1013

2
gm/cm”, everything has been expressed in terins of n_ and t, has been chosen

n
as the free parameter, Special care has been taken so that all the physical quanti-
ties are continuous at (b) where the free parameter is changed from © fo 1.

It has been shown that the pressure obtained in this way (Levinger=Simmons potential)
eventually crosses the line P= £ . Immediately, on crossing this line, the

equation of state is switched from (3=~73) = (3-74) to the asymptotic equation of
state, Both of the asymptoiic expressions P= T and P = 3 € have been used,
because there is no guarantee that P> % & is actually realized physically, even

though it has been shown in Section 11i~5 that this is possible,

The solid line in Figure 25 represents the final composite equation of
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state. The nearly straight line in the lower density region corresponds to the
electron-heavy ion configuration, Even though it is not apparent from the graph
this line is found to be slightly bent downward if we examine it more carefully,
which is due to the decrease of Z/A with the increase in derssity in this region.

old

The big dip at around 10]2 ~ 1 gm/cm3 is due to the atiractive potential; in

high density regions it is seen to be switched over fo the asymptotic equation

P=¢t,
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CHAPTER IV
MODELS OF COLD NEUTRCN STARS
IV-1 GENERAL REMARKS

The problem of the internal structure of neutron stars is fundamentally
related to the properties of dense maiter. The discussion in the previous two
chapters reveals that dense matter has properties which differ markedly from
those of ordinary matter. From the study of the equilibrium compasition in terms
of densities considered in these chapters, we recognize that the problem of the
siructure of degenerate stars can be worked out in two phases. In one phase the
density of the star is relatively low, being around 10° gm/cm3. In this case the
crushing force of gravity is counteracted by the pressure of degenerate electrons,
A star in this category, that is, one for which the equilibrium configuration is in
the eleciron=nuclear phase, is generally known as a white dwarf. Because the
Fermi pressure of the electrons is not sufficient to balarce the gravitational force
in such a star when the mass is greater than a certain critical limit (about 1.4 Nb)’
the theory indicated the conclusion that beyond the mass limit the star would be

(7

crushed to a point. However, before this limit is reached, it is now known that
through the inverse beta processes, electrons cre captured by the nucleus and the
equilibrium siate gredually shifis from the electron=nuclear phase to the neutron-
phase in the manner detailed in the last two chapters, It has been shown that a

stellar configuration whose ceniral density lies in the range from 10 d gm/cm’3

to 10 gm/cm3 (the transition rcgion from the eleciron=-nuclear to the reutron
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phase) is Unsfable(s) but another stable steliar configuration is reached when the
central density becomes equal to or greater than about 10]4 gm/ cm3. Here,
neutrons are the primary component in the equilibrium composition of the star and,
consequently, it is generally known as a ncutron star, When the central density
f‘ 2 107 gn/ cm3, the electron pressure is no longer sufficient to counteract the
enormous pressure due to gravity which increases rapidly with increasing density,
but with a further increase of density, the number of free neutrons increases, and
when the neutron number density reaches about 2.6 x 1038 cm—3, the partial
pressure of degenerate neutrons becomes sufficient to counteract gravity. This
corresponds to a total matter density near normal nuclear density (about 3 x 1014
gm/cma), where the Fermi level of the neutrons is about 60 Mev. In this region
neutrons constitute a non-relativistic degenerate gas. When the central density
rises further, another crushing point is reached where even nuclear matier is crushed.,
At the first crushing point (known as Chandrasekhar's mass limit), the pressure of
degenerate elecirons is overceme by gravitational forces. At the second crushing
point (known as the Oppenheimer-Volkoff mass limit), gravitational force has over-
come even the pressure of degencrate nuciear metter,

The titie of this thesis is "Neutron Star Models," but because of the inter-
esting behavior of degeneraie stars in general, densities ranging from the white
dwarf regions to the reutron star regions have been covered ia this research, aithough
of course the main emphasis has been placed cn higher density regions. For the
purpose of comparison, | think it convenient to first infroduce the models of other

physicists, (In the following, the notation gor gy is used for matter density,
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and £ for energy density, unless otherwise stated. The symbol Mp or ®

denotes the mass of the sun = 1,935 x 10%° gms.)

V-2 PREVICUS WORK

a. Models of White Dwarfs

An extensive investigation of the general problems related to white dwarfs
is found in reference 31, Theorctical models of white dwarfs have been con-

@)

structed by Chandrasekhar.'”’ From cquations (3-28) and (3-29)} we get

P=AF(X) (’-we;—:=5x3
—FL)() X (Q_X 3)(11" 7) +3smh 1IJC , where (4-1)

A= Tt 34 3) = 601X10, B mmc e H/(343)

2 X1V e
with the same notation as used in Chapter 11, cmd X = pF/mc, These equations,

which are identical with (3-30c) and (3~34} if the relation beiween t and x is
as given in (3-35), are used as the equation of state in Chandrasckhar®s models,
The Newtonian equations (1-1) and (1-2} were then integrated, with the usual
boundary conditions.

The relation between the ceniral density and the mass of his models is
shown in Figure 26, where p, issct equal to 2. As the density goes to irfinity,
mass approaches a critical value of 1.44 M@. Rudki-&b?ng(éz) pointed out thot
Chandrasekhar’s maximum raass is too large due to the neglect of a relativistic
"spin~orbit" effect coming from the strong radial eleciric field in white dwarfs.
When this modification is faken into account, the limiting mass reduces to about

1°2M® « Rudki8bing'’s result is plotted in Figure 25 together with those for other
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models. His conclusions have becn criticized by Salpeter (reference 11(b)). The
mass-radius relation of Chandrasekhar’s models is shown as a dashed curve in the

upper portion of Figure 27, Al!l of the white dwarfs observed lie along the curves
in the lower portion of Figure 26, with mass ranging from about 0.2 to 1.2 Mg -

The typical radii of such stars range from about severa! thousand kilometers to

ten thousand kilometers, as Figure 27 indicates.

b, QOriginal Work by Londcu(!)

By applying the equilibrium condition to bodies of large mass and by using
Newtonian mechanics, Londau in 1932 reached the following conclusions. The
minimum mass a stable degenerate star can have is about 0.001 Mg the maximum
mass for a mixture of elecirons and nuciei is roughly 1.5M ; and that of a pure
nevtron configuration is about 6Mo o His ostimate of the minimum mass was based
on the requirement that the sum of the gravitational and kinctic energies per particle
of core should be lower than the encrgy per particle in stable nuclei. The particular
case of oxygen was used in his derivation, Minimum mass of stable neutron stars
was estimated to be about 0.2M 9(63) o His estimate of the maximum mass of an
electron=nuclear configuraiion (white dwarfs) is excellent, but his maximum mass
of about 6MO for neutron stars is too large. This is mainly because the Newtonian
theory of gravitaiion that he used in his analysis is not justified for neutron siars,

although it is perfectly vaiid for white dwarfs.

¢, Limiting Mass by Opperheimer and Serber(3)

Apparently stimulated by Landau's proposals, an improvement was applied to
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the estimates of minimum mass of stable stellar neutron cores by Oppenheimer and
Serber (1958). They adopted a requirement that the neutron's free energy in the
core be less than that in the nucleus in order that the core be stable with respect
to the most firmly bound nuclei — which led them to about 1/6M¢) as the minimum
mass. They also noted that in the region where a neutron configuration can exist,
nuclear forces should not be neglected, and they assumed the forces between
neutrons to be of ihe spin-exchange saturating type. This reduced the minimum

mass for core stability to 0.1M 4.

4
d. Models of Neutron Cores by Cppenheimer and Volkoff( )

in 1939, Oppenheimer and Volkoff made an important step forward from
Landau’s original work, by constructing structure equations of general relativity
and by using the equation of state of an ideal Fermi gas of neutrons, If the functions
€ (P) in (1-8) and (1-9) are eliminated through the equation of state expressed in
the forms (3-30b) and (3-30c), the two hydrostatic equations are expressed in terms
of the parameter t only. In this form, the hydrostatic equations were integrated
fromU=0and t=1° at r=0 to r=R where t=0 and U=M. R determines
the boundary of the matter disiribution and the radius as seen by a distant obsarver.
M determines the observable or gravitational mass. The system of units as intro-
duced in Chapter | was adopted.

The central density=mass relation of their models is shown by the upper
dashed curve in Figure 25 and their mass=radius relation is given by the dashed

curve in the lower portion of Figure 27, Their result may be summarized as follows:
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the mass increases with increasing t© until a maximum is reached ot about t€ = 3,
after which the mass drops until a value of about 1/3M@ is reached at t¢ =co. No
static solution exists at all for M > 3/4 Mg, two solutions exist for(v3/4) Mg >
M> 1/3M® , and one solution exists for i < I/SMO , but if its mass is less than
about O.IMD a neutron core is no longer stable against disintegration into nuclei
and electrons, At the point of meximum mass which comes at about 0.7Mp) , the

3

radius is about 10 kilometers and the central density is about 1016 gm/cm”, (See
Figures 26 and 27,)

They approached the stability problems using the theory of polytropes, and
concluded that among the two solutions in the range 3/4 > M >,1/3M@, the less
dense models are stable, while the more condensed ones are unstable. The radius
of their stable models is about 10 to 20 km, the central densities lying between
about 10]2 and 1016 gm/cm3, They posed the interesting question of what happens
on bodies exceeding the critical mass 3/4MO. If repulsive nuclear forces are taken

into account the some authors estimated quaiitatively that the maximum mass may

reach about IMO. This result was obtained by apolying the relativistic limitation

P=1/3 &,

e. Models of Degenerate Stars by \Wheeler, Harrison and Viakano s ¢0)

Applying their composite equation of state introduced in Section 1!i-4e,
equations (1-8) and (1-9) were integraied with *he boundary condition at the
c
center U{G) =0 and € (0) = & . The radius of the siar was taken as the distance

from the center io the point where P=0. Their resulis are summarized in Figures
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7
26 and 27 (solid curves). Up to a central density 10° gm/cm, the agreement

betvreen the Chandrasekhar, Wheeler and Rudkj8bing models is quite satisfactory,
but V/heeler's models deviate more and more from the models of Chandrasekhar

and Rudkjdbing for ¢ € > 108 gm/cm3. This is because the inverse beta process is
included in Wheeler's equation of state which prevents the electron number density
from increasing indefinitely with an increase in central density. That is, electrons
are lost through the capture process and the electron pressurc does not rise suffi-
ciently with the increase of matter density. A turning point occurs ai around 1.2M@.
In the region of central density from about 108 gm/cm3 to 1013:5 gm/cm3,
equilibrium mass decreases with an increase of central density. For a reason to be
explained later, this range occurs in an unstable region while in the lower portion

of the curve up fo about 1.2M ¢, stars are stable. When the central density has
reached the order of magnitude of normal nuclear density, ncutron pressure is
sufficiently large to again give stable configurations. Wheeler's models for

§>°’\>/ 10!4 gm/cm3 are esseniiolly the same as the previous mode!s of Cppenheimer

and Volkoff,

f. Cameron's Models of Mautron S;'rczrs(9)

In the previous models of neutron stars, nucleon-nucleon inieractions were
entirely neglected, although Cppenheimer and Volkoff gave a brief discussion on
the importance and possible effects of such nuclear forces, Cameron took the
important first step of constructing neutron siar models ia which these interaction
forces were iaken into account quantitatively, The Skyrme equation of state, intro-

duced in Section Ili=4b, was used for that purpose, Not only observable mass, but
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also proper mass and gravitational binding in mass units was obtained by integrating
equations (1-45) and (1~46) and the usual relativistic hydrostatic equations (1-8)
and (1-9), simultaneously. The radius was defined as the distance from the center
to the point where the density has decreased to 108 gm/ cm3, which corresponds to
the point where the scale height (that is, the distance over which the pressure falls
by a factor e) is about Z0 meters in the lightest models and about 1 cm in the densest
models. Nineteen models were constructed in this manner. To see the effect of the
short range strong repulsive forces encountered at high densities, a hard core model
was also constructed whose parameters were fitted to experimental data on high
energy proton-proton interactions. The potential goes to infinity at a hard core
distance of 0.4 fermis. In this model, the gas abruptly becomes incompressible at a
density of 3.7 x 1016 gm/cms, and obeys equation (3-38c) at lower densities.

The results are presented in Table 1, Figures 3 and 4 in reference 9, The
density profiles of his models arc shown in Figure 28. Except for some of the densest
models, the densiiy distribution inside a neutron star is practically constant until we
come to the very edge, then it drops abruptly, almost vertically down to zero. This
behavior more than justifies the fact that the integration was terminated at p= 108
gm/cmS. In the higher density regions the equation of the density profile was given
in analytic form as P =8x 10]9/1'3/4 for pupto p = ?c’ that is, until the
uppermost curve in Figure 28 meets the horizontal line ¢ = fc. The radius in the
stable region is almost constant, ranging from about 7 to 9 kilometers.

Cameron confined the range of validity of his models to within the region of

15

3
central density less than or equal to about 10~ gm/cm”. The reason is that a
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considerable amount of uncertainty is inherent in the higher density regions
because for 52 >1013 gm/cm3: (1) four-body and higher terms in the nuclear
potentials may become significant and would tend to make the pressure~density
curve even sieeper, and (2) on the other hand the hyperons present for 0> 101°
gm/cm3 wiil first depress the Fermi level of the neutrons far below the value ex-
pected for a pure neutron gos which he was considering in this work.

Cn applying this criterion to his models, some of which are listed in Table &
we conclude that they must certainly be reliable up to about 1 solar mass. At
S>° = 1015 gm/cms, the exact value of the observable mass is 0.74Mg, and the radius

15 gm/cma, the mass

is 8.75 km. At the slightly higher central density of 1.5 x 10
hos increased 1o 1.36M g, (almost twice as large as the Oppenheimer-Volkoff mass
limit of 0,7M@), and the radius is 9.26 km (about the same as the radius of
Oppenheimer=Yolkoff stai of 0.7Mgj. This is a sigrificant result to which it is

worth calling attention. The maximum observable mass comes at abeut 2 solar masses,

with a radius of 8.2 kilomerers, Noting that here the central density of the star is

1018 3

already 4 x gm/cm” where the equation of state is unreliable, Cameron
comments in his paper that his figure for the meximum mass should not be taken too
literally,

The most important outcome of Cameron's work was that it gave the first
quaniitative indication of the possibility that the observoble mass of stable neutron
stars might be considerably lorger than 9.7Mg, , eartier maximum mass limit on such

an objects It might in fact be even larger than the mass limit set on white dwarfs

{about 1.2 10 L.4aMg).



TABLE 8. Original neutron star models by Cameron (Skyrme type) in medium

- and low density regions, where ¢ is the ceniral matter density, PC is the central
pressure, R is the stellar radius, and M, Mp, and My are the gravitational mass,
proper mass, and binding energy in mass units.

?c (gm/cms) ! Pc(dynes/cm2)

| akm L MM | MMy MM
13 31 "

1x10 1.164 x 10 27.94  0.04424 0.04434 | 0.00009819
3x10'° | 4.398x108! 2326 i 0.04754 0.04768 | 0.0001456
! ;
14 22 | J R
1x10 1168 x 1052 | 21,41 | 0.04426 0.04441 | 0.0001483
2x 1014 | 3,474 x 1052 t 20,49 0.03603 0.03622 | 0.0051209

3x10" 11306 x10% {1040 | 0.03278 0.63200 | 0,0002134
Rl
|

4x10M% | 3632x16% | 7.409 | 0.07062 0.07157 | 0.0009427
| .

6x10M4 | 1479 x10% | 7533 | 0.2205 0.2375 | 0.005349

8x 1014 13.830x10%% | 2.222 | 0.4701 0.5008 | 0.03075

1x10'% | 7.830x 1034 ! 3.759 07459 0.3212 | 0.07554

1.5x 1010 | 2,750 x 10%° 19,252 1.357 1,626 | 0,2695
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The minimum mass of stable neutron stars was also estimated, It was pointed
out that in models with smaller densities, the gravitational binding in mass units is
much less than 1% of the proper mass and that such models are energetically unstable
against transformation into iron white dwarfs. Using an argument more or less
similar to the one which led Oppenheimer and Serber to their value of about 0.1 M ¢
for the lower mass limit (IV-2c), in Cameron's models the minimum mass for stability
was estimated to be 0.05 M,

Another contribution of Cameron's paper is the useful discussion on hot neu-
tron star models, A possible mechanism for the formation of neutron stars is discussed
here and several interesting problems which had not been touched upon in previous
papers on this subject were posed. One, for example, concerning the effect of hot
atmospheres and of cooling on the detectability of neutron stars prompted me to

undertake the present research,

g. Models for Zero-temperature Stars by Homada and Sa!peter(m)

Using the equation of state constructed in reference 11(b), Salpeter and
Hamada investigated the properties of degenerate stars. The Newtonian equations
of hydrostatic equilibrium were integrated from the center to the point where P=0.
To see the effect of composition, a set of models with different elements and another
set with an equilibrium composition of cold matter as introduced in Section 11-3b
were constructed. As in Wheeler's models, the mass of Salpeter’s models reaches a
maximum at a ceriain point as central density is increased, and with a further increase

in fc, the mass decreases, due to the electron captures in the equation of state used.
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At this maximum point, M/Mg =1.4, 1,36, 1.34, 1,17, and 1.11, and log pc = 9,78,
9.5, 9.28, 3.16, and 9.1, for a chemical composition of Clz, MQZ4, 5128, 532 and

Fe56 3

, respectively. The radius of a star at this point is from 2 to 4 times 107" R ¢,

(where Ry =6.951 x 105 km, the solar radius), depending on the composition. For

3

the equilibrium composition, the maximum mass is 1.015@, the radius is 3.5 x 10 "Rg
and the central density is around 107 gm/cms. Near the critical mass, the equili-
brium composition appears to give the smallest mass as compared with other compo-
sitions.

Neutron star medels were constructed with the Skyrme-Cameron equation of
siate (3-38c). In the outer layers of a star in which p < 3.4 x 10” gm/cm3, the
equilibrium composition was used. An interesting outcome is that some of the
lightest neutron star models (1()13 < p%<4x 1014 gm/cm3) have large envelopes
of heavy nuclei and elecirons, For instance, when p © = 3.3 x 1014 gm/cms,

R =4.06 x 103 Rgr M =082 M, the mass contained in the neutron core is only
about 5% of the total mass, and the radius of the core is only about 0.3% of the
radius of the star (with its envelopes included), The most extended envelope

(R =8.8 x 1073 Rg) is obioined vhen pC =3.42 x 10t4 gm/cm3; both mass and
radius fall rapidly with an increase of central density beyond this value. The mass

14

reaches a minimum value of 0.05Mg at p©=3.5x 10" and then increases fairly

c=1o!d gm/cm3, then M~IMy, The effect of the envelope on

rapidly, When p
3
the radius is negligible for pcg 5x10 gm/cm and that on the moss is

1 3 .
negligible for pcz 3.5 x 10 4 gm/cm®. Noting that the efiects of general

relativity are completely neglected, Salpeter comments that the tremendous effect
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of the envelope near p© ~ 3.4 x 10'4 gm/cm:3 indicated in the above discussion

may be unrealistic. These results will be compared with my results later in this paper.

h. Superdense Stars of Ambartsumyan and Scakyan(M’ 15,16)

(i) Work in Reference 14 = Ambartsumian and Saakyan constructed a

series of superdense stellar models for: (a) an ideal Fermi gas of an assembly of
baryons in equilibrium, and (b) a real gas of the same composition in which inter-
action forces are taken into account. For (a), the equation of state with the inter=
action terms nV(n) and nz(av/a n) in (3-41) set equal to zero was used, and for
(b), these interaction terms were included although the second term in (3-40) was
neglected. The equilibrium concentrations of various elements as obtained in
reference 13 (similar to the revised values of abundances obtained in this research,
in Section 11I-2) were used. 1, the "relativistic parameter” of neutrons, was used
as a porameter of integration, and the infegration of equations (1-8) and (1-9) was
carried out from the cenier to the point where t, =0. The mcss-ceniral density
ralations(dashed curves) and the radius-central density relaiions (solid curves) for
their models of an ideal gas (marked (1))and a rea! gas (marked (2)) are shown in
Figure 29, The ceniral density is represented by the expression tan™! t,(C). The
maximum mass for an ideal baryon gas is about 0.64 Mg+ somewhat lower than the
Oppenheimer-Volkoff vaive of O.7M®; that for o reel baryon gas is about LOMO.
The corresponding radius at each maximum mass is, for an ideal gas about 11 km,

and for a real gas about 6 km, At maximum mass, the central cnergy density of the

star is about 2.4 x 10]5 gm/cm3 for an idea! gas and about 10]6 gm/cm3 for a real
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gas. After passing the maximum, the mass drops with a further rise in central
density, reaching a minimum of about 0.2M,, for an ideal gas and about 0.64Mg,
for a real gas before increasing slightly. Similer minima occur for radii, also. In
the high density limit, these models develop a central singularity. The asymptotic
values of radius and mass are about 11 km and 0.32Mg for an ideal gas and about
5 km and 0.7Mg, for a real ges. A model of an incompressible fluid was also con=

15 gm/ o> the entire stellar body consists of neutrons, while

structed, For € °© < 10
for €€ > 10]5 gm/cm3 a hyperon core is devdoped at the center and rapidly grows
to almost 1/3 of the total stellar size. For tnc >3(r &c>1.1x 1016 gm/cm3)
the bulk of the star's mass is in the hyperon core, and the effect of the outer enve-
lopes of neutrons (and of electrons and protons in envelopes further out) is not

important.

(ii) Work in Reference 15 =  To complete their discussion on the internal

structure of superdense stars started in reference 14, Ambartsumian and Saakyan
calculated the following physical quantities of the same models for (a) an ideal
baryon gas, and for (b) the real baryon gas construcied as in reference 14: (1) the
actual stellar radius Ry, (or the proper radius) defined by (1-43), (2) the tota! baryon
number of the star, N,defined by (1-44), and (3; two kirds of gravitational packing

fraction o and a, defined as follows:

ap = AM]/N my where &Ml =N mH-M (4-2)
ap = A MZ/M, where AMz =M, - M, M, =4Tl\'Jr“\/_:§;:(—rj r;e;()r)dr
o I

where ¢ =1, my is the proton mass, M is the gravitational mass of the star U(R),
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AM is the binding energy in mass units (or gravitationallmass defect), and M is the
total energy density integrated over the whole proper volume. Besides these
quantities, the radial distribution of parameter tn(r) (corresponding to density
distrioution), the moss U(r), the time metric goo(r), and the rodial component of
the metric g, (r) were calculated for an ideal baryon gas. Some of the results in
references 14 and 15 are shown in Table 9. Near the surface, g, is about 1 to
1.3 and 9oo fanges from 0.7 to 1 for models with tnc from 1 to o (that is, for p©
from 10]4 gm/cm3 to ), g,c Yanishes at the center and shows a singularity ot
fnc =c0, Gravitational mass is plotted against total baryon number in Figure 5 of
reference 15. For N > 6.5 x 1056, there are two or three solutions of the structure
equations (i.c. two or three values of gravitational mass M) for one value of N,
for N up to 13,5 x 1056. For a larger number of baryons there exists no solution.
At the maximum point, there is one value of mass (the maximum mass) where
th ~ 2.9 (or £¢~ 1016 gm/cm‘?)° The definition of AM; above corresponds to
our My (ihe gravitational binding) defined in Section I=4c. Cur definition differs
somewhat from their definition. 4 M, from the definition appears to express the
difference between the actual macroscopic mass of the star and the mass observed
by a distant observer,

(i1i) Work in Reference 16 = Sackyan pointed out that the expression for

energy density p = mn used in reference 9 is an oversimplified one, and repeated
the calculation using the relativistic cxpression for Skyrme's cquation of state
(3-39). The conclusion is that the resuli of reference 9 ond that of reference 16

coincide for € €< 1019 gm/g:m:3 and M < 1My, but for higher densities the two
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TABLE 9. Models of Ambartsumyan and Saakyan, where *:n is the relativistic parameter of neutrons at the center, £ is

the central energy density, R, is the proper radius, M is the observable mass, N is the total baryon number, and o and ap
are two kinds of packing fraction as defined as (4-2) and (4~3).

. . 5 Radius 3, (km) MWMe _ :mow
t € “(gm/cm”) Tigr _Ivﬁmqo: Core | Star Hyperon Core: N 107 oy a,
“ w
L 10 [1oox10 ra ; - 0.306 - 402 1 0100 |  0.0180
She leeox10% 1521 - 0,557 - 7.23 | 0.085 | 0,0552
= T ; " . !
ma,o L 1.09x10'% 1104 0 349 0.519 | 0.237 656 | 0.060 | 0,104
T 40 i829x1016 | 902, 27 6,329 | 0,209 401 0024 | 01
50 345x1017 743 213 0228 . 0.6l 248 . -0.091 |  0.159
6.0 | 1.105x1018 824, 1.83 0177 | 0125 . 196 -0.073 | 0.198
© | ALY 2.3 . 0.324 1 0112 . 3,70  -0.038 0.109
24 236 x1015 112 | 49 ~0.860 0.353 . 11,0 . 0,071 0.145 m
Q30 | 1.67x10'6 ;697 | 5.8 1,028 | 0966 127, 0.023 0.450 !
© B2 ! 575x106 63l | 533 0.847 | 0,817 9.8 | -0.027 | +0.472 |
534 1.38x107 656 | 500 0.673 0,650 6.55 ' =0,22 | +0.546
40 [1.61x1018 715 | 529 0670 | 0415 . 683 |-0.6 0.552
7.0 | 288x102 | 721 | 532 0686 | 0.3 700 |-0.16 0.545
'@ o 709 1 530 | 0691 | 0443 703 '=0.16 0.548
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deviate from each other appreciably. The maximum mass occurs at about the same

central density, but its value is reduced from about 2Mg, to 1.7 M.

IV-3 MODELS CONSTRUCTED IN THIS RESEARCH

a. General Remarks

From the previous discussions we see that a general procedure for obtaining
models of dense stars consists of a step by step integration of the equations of
hydrostatic equilibrium (1-1) and (1-2), or (1-8) and (1-9), and related differential
equations such as (1-45) and (1-46), and using a suitable expression of the equation
of state and the proper boundary conditions at the center and on the surface, In this
research various forms of the equation of state are used; that for (1} an ideal gas,

(2) a real gas with Skyrme interaction, and (3) a pure neuiron gas or a complicated
configuration of mixtures with a Levinger~Simmons type interaction-—Vg ; Vo
or o combination of the two, VQT. In the following the models constructed in this
research are presented n the order of increasing compiexity, starting with the
simplest case = an ideal Fermi gas of neutrons. Finally, six models are selected
from these as basic models to be used extensively in Chapter V, The resulis will be
discussed and compared with the models of others.

A brief inspection of the differential equations of Chapter | shows that they
cannot be solved analytically. There are various methods for the numerical solution
of such differential equations. In this research; the Adams predicior-correcior

464

metho was used for all the numerical integrations performed. Besidas this,

another technical problem is that an interpolation of a high order of accuracy is
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required in the various kinds of numerical work (for instance, this problem was
already faced in Section 11i-4f in evaluating the Levinger-Simmons potentials of
the exchange type v, and J, and their derivatives). To meet this requirement
the polynomial interpolation method(®4) has been adopted throughout this research.
A special interpolation subroutine using the polynomial method and an integration
subroutine using the Adams method of high accuracy constructed by Mr. B. Sackaroff
at the computer department of the Goddard Institute for Space Studies became
available, These subroutines are used in conjunction with the main programs and
other subroutines | constructed, whencver necessary. The numerical errors, inherent

in any numerical analysis, should, therefore, be considerably eliminated.

b. Models With an Ideal Fermi Gas of Neutrons

The model construction in this rescarch started with this simplest kind for
various reasons: (1) fo deub!e check previnus resulis with the 7094 computer, (2) to
orient myseif to the work and to make sure that the main Fortran program and sub=~
roufines | constructed worked properly by comparing my resulis with those of others,
and, most importantly, (3) iv caiculate other interesting physical quantities such as
the gravitational binding ard its behavior as a funciion of central density, something
which had not been done before.

Equations (1-8) and (1-9) as well as other difierential equations of interest
such as (1-45) and (1~46) have been integrated with the equation of state (3~30b) and
(3-30c), from the center (where u(0} =0, and 1h(0) =1,€) to the point r=R where

the density drops to 108 gm/cm3,, The gencral shape of the density profiles of these
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models are similar to those obtained carlier by Cameron and shown in Figure 28,
which indicates that this surface boundary condition is perfectly legitimate for
neutron stars whose central density and mean density are both above about 1014
gm/ cmse

The results are shown in Figures 30, 31, and in Table 10. In Figure 30, the
dashed curve represents the gravitational mass (which is actually seen by a distant
observer)as a function of the central encrgy density. The maximum mass is approxi=
mately M~ 0,72, where £~ 4x1010 gm/cm3, as expected. A comparison of
Figure 30 with Figure 26 shows that this is in perfect agreement with the previous
work. In previous work, models with central energy density €€ up to about 107
gm/ cm® have been constructed by the usual meihods and then one more model with
¢% =0 was constructed by using an analytic approximation. That is, there was a

ol”/ gm/cm3 and the one with the central

gap between the model with &€~ 1
singularity (C© =), It is interesting to cxplore the behavior of superdense stars

in these ulirahigh density regicns. In the present research, the integration was
carried out for a sequence of models (which included those with centra! energy
density €€ as high as 1022 ~ ‘.023 gm/cms) urtil no fluctuation from a straight
vertical line (in the €% - M plane) was observed in a plot like that shown in

Figure 30, The siraight vertical line is a sign that we are already in a singular
region, and that the mass, radius and other properiies of models lying on this vertical
line are those possessed by the extreme model with €€ =, Figure 30 shows the

outcome of such an investigation. Insteod of going straight from the point £~ 1017

gm/ em® to £C =co, both the gravitational mass track and the proper mass track in
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TABLE 10. Neutron star models with an ideal gas (a is the raf io of the binding energy in mass units fo proper mass,
944(R) is the time metric, 9, (R} s the radial component of mztric at R, @ (R) is the red shift, and other symbols are

those introduced in Tables 8 and 2.}

_Ammmwo £c _mwmwo PEL Rkm) | /Mg | Mp/M{Mg/Mg | Bwl 94® | 5 A | $® , b e
12,411 30.415 | 39.16 10.05436| 0.05813 | 0.00327] 0.0562 | 0.996 | 1,035| 00021 | 0.3
13.7000 | 32522 | 23.54 10.2251 | 0.2321 | 0.0070 | 0.0301 | 0572 | 1.0 | 0.014 | 0.8
14.813 34.346 | 14.19 |0.5643 | C.5911 | 0.0262 | 0.0453 | 0.883 | 1.130 | 00584 | 1.8
15,497 35,365 9.87010.7057 | 0.7418 | 0,0359 | 0.0684 | 0.790 | 1.265 | 0.105 | 2.8
16.024 36,112 7.32610.6753 | 0.7019 [0.0266 | 0.0376 | 0.728 | 1,372 ! 0.136 | 2.8
16.503 36,729 5.81510.5759 | 0.5863 |0.0104 | 0.0177 | 0.708 | 1.564 | 0.146 | 48
17.047 37.377 4.976(0.4559 | 0.4432 [0.0127 [-0.0287 | 0.730 | 1.370 { 0.135 | 6.0
17.459 37.872 5.00410.3085 | 0.3604 |-0.0281 |-0.0780 | 0.772 | 1.29 | 0,114 | 7.0
17.93 38,35 5.640]0.3664 | 0.3358 [-0,0306 |-0.0914 | 0.808 | 1.228 | 0.096 | 8.0
18.36 33,80 6.35310.3889 | 0.3616 |-0.0273 |-0.0784 | 0.820 | 1,220 | 0.090 | 9.0
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the €=M plane experience one minimum~mass-hump (at around log €€~ 17,7)
and one maximum=-mass-hump (at around log & ~ 19.4) before developing a
singularity at a finite mass (vertical line). [t was reported(él) recently, however,
that the existence of such a small second hump (maximum) was observed in models
in the ultrahigh density regions constructed by Misner and Zalo!sky(24) who used
the limiting equation of state P= & or P=&/3. We shall return to the discussion
on this topic later (IV~-4e).

The solid curve in Figure 30 represents proper mass (the mass before it was
assembled into a star) as a function of central density. It is quite interesting to
see that the proper mass becomes less than the gravitational mass for log E,CZ' 16.7.
This is just what is to be expected as explained later (Section IV-4), In Figure 31,
central density is plotted (the dashed curve for an ideal gas) against stellar radius
(the radius of the star actually secn by a distant observe;f). Combining Figures 30
and 31, we sec that the radius of the star with the maximum mass (0.72 ©) is about
9.5 km, as expected,

in Table 10, varicus physical quantities of interest are listed for ten such
models with log 10 £° (the central density in cgs units) ranging from 12,41 to 18,36,
P® is the central pressure, R is the radius in kilometers, M/M@ is the gravitational
mass U(R) in solar mass units, MP/Mo and MB/MQ are the proper mass and
gravitational binding in solar mass units, a is the ratio of the binding energy in
mass unifs to proper mass, SE(R) is the red shift, 944(R) is the time metric and grr(R)

is the radial component of the metric S evaluated at the surface of the star. The
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first five quantities are obtained by a series of integrations performed in the manner
described earlier for given initial values of fnc. Mg + & g44(R), goo(R) and @ (R)
are calculated through the following simple relations which are derived from the

definitions given in Chapter I:

Mg/My = Mp/M, ~ M/N, (from Appendix 2) (4-4)
P (R) = 8NN =1.47 (M/M,)/R(km) (4-3)
944R)=1-2¢R)=~- 1/(g, R) (4-6)
a = Mg/Mp (4-7)

Comparing my a defined by (4-7) above with oy defined by (4-2) by
Saakyan, and examining the definitions of terms involved, we ccn easily see
(Appendix 2) that my a and Saakyan's aj mean the same quantity, a fractional
binding energy or a packing fraction of gravity. This coincidence applies for a
pure neutron configuration (neglecting proton-neutron mass difference), but is no
longer true for a configuration of mixtures (Appendix 2). For mixtures, a more exact
definition {4-7) with M and MP which are obtained as the solution of equations
(1-8) and (1-45) must be used. Let us compare a in Table 10 and a in Table 9.
The small individual deviations seen between o and aj are reasonable, considering
the errors inherent in the definition of ay given by Saakyan (which was just pointed
out) and considering that the models of the present section neglect the effect of
hyperons in the high density regions entircly. The general agrcement is then satis=
factory. Both tables 9 and 10 are useful in showing the general relation between
fnc and &, We have seen that the maximum mass occurs at about a central density

in the range from 1019 10 10%6 gim/c:m3 which roughly corresponds to tnc~ 2 to 3.
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The radial disiribution of density, mass, 900 and g, obtiained for models in this
section have a similar behavior as is obvious from Figures 1, 2, 3, and 4 in

reference 15,

c._ Neutron Star Models With the Relativistic Skyrme Equation of State

The first set of neutron star models with interaction forces in this research
was constructed by the use of the relativistic Skyrme equation of state (3~39), with
fnc as the free parameter for a pure neutron configuration. As before, the inte-
gration was terminated at ¢ =108 gm/cm3. The relation between central energy
density and mass is shown in Figure 32 (curves marked (1)) The solid curve re=-
presents graviiational mass and the dashed curve the proper mass. Comparing this
graph with the cne in reference 9 which refers o original models of this type, we
recognize that the results are idenfical up to about &€~ 1019 gm/cm3, and that
thereafter mass decreases faster in the revised models here. Moreover, the singularity
occurs at smaller masses (M~ 1.3 O instead of previous 1.3 ©, and Mp~ 1.36 ©
instecd of previcus Mp~ 2.9000). The maximum gravitaiional mass is reduced from
about 2t0 1.7 © and the maximum proper mass from about 310 2,1 O . In these
models crossing of the gravitaiional mass curve and the proper mass curve does not
occur, Comparing the Skyrme-Cameron type models obiained here with models of
noninteracting neutrons of the previous section, we note that the equilibrivm mass
at the same ceniral density is much larger for the former than for the latier: more
than twice as large ot the maximum point and about three times as large at the
singular point (when &€ — ©), The fact that the binding cnergy does not become
negafive in the present models suggesis some complicated effect of nucleon-nucleon

forces. These results are summarized also in Tables 11a and 11b.
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TABLE 11a. Relativistic Skyrme-Cameron fype models with P < €, in medium

and high density regions (the symbols are those introduced in Tables 8 and 9).

231

!Log E &g 109 P Rem) | M/Mg | Mp/My | Mg/M_ | 1€
14,947 34,662 8.0i3 | 0.4954 | 0.5423 0,0459 2.0
15,311 35.670 8.768 1,441 1,726 0,285 2.5
15,704 36.478 7,684 1,692 2,078 0,386 3.0
16,165 37,173 6.599 1,503 1,752 0,249 3.5
16.678 37.795 6,221 | 1.329 | 1.443 0.174 4.0
17,726 35,906 6,612 1.313 1,413 0.095 5.0
18,726 | 39,912 6.627 1 1.345 | 1.457 0,112 X
19,678 40,861 6599 1,338 1,440 0,102 7.0
20,597 41,778 6.606 1,337 1.438 0.101 8.0 |
21,496 42,675 6.609 1,333 1,440 0.102 9.0 i
TABLE 11b. Relativistic Skyrme-Cameron type models without relativistic
limitation P< € (the symbols are those introduced in Tables 8 and 9).

log 10€ %cgs) log; Opicgs) Rikm) hvv4 M, M P/Me t. ¢
13,6974 31,8256 22,44 0.04612 0.04754 0.8
14,7128 33,8841 6,325 Q,12116 0,12523 1.7
14,9470 34.6622 8,013 0.49537 0.54220 2.0
15.3854 35.8435 8,630 1.5595 1.8724 2.6
15,6207 36,3276 7,945 1,6993 2,080 29
15,8805 26,7672 7,186 1,623¢ 1,9787 L 3.2 |
16,1654 37.1733 6.583 1.5025 1.7509 3.5 |
16.7230 37,9132 €.044 1,2974 1.3343 4,1
17,7261 38,7058 6,192 1.2084 1 1.3136 5.0
18.9199 40,1055 6.274 1,2911 i 1.3655 6.2
19.7703 40.9543 6,255 1.2586 1.3611 7,1
20.5968 40 77739 6.255 1,2870 1.3533 8.0
Zi.6741 42.8532 6.258 1,2877 1.2592 9.2
224712 43.6493 6.259 1.2880 1.250 i0.1
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V/e noted in the previous chapter (1i1-5) that pressure must not exceed
energy density so that the speed of sound will not exceed the speed of light. We
also noted that a potential of the Skyrme type does exceed the limit P= € as
€ -~ . To take this requirement into account, the pressure calculated through
the relativistic Skyrme equation of state (3-39) was  switched over to the asymptotic
equation P= & as soon as the pressure started to exceed the energy density. In this
way, curves marked (2) in Figure 32 werc obtained. These show ihe relation between
central energy density and grevitational mass (solid curve) and central energy density
and proper mass (dashed curve), with the relctivistic limitation P < €. Comparing
curves (1) with curves (2) in Figure 32 we see that the effect of the requirement
P< € is cppreciable only for £¢> 10164 gm/cms, and that the asymptotic mass
(mass with infinite central density) with P< § appeors to be increased somewhat
from the value for models with the pure Skyrme equation of siate (without the
limitation P< &), The effect of the relativistic limit is seen to discourage any
further change of equiiibrium mass in the same direction with increasing central
density. This general conclusion will be further confirmed in Section IV-4i.

The radial disiribution of t,(r} {which specifies the density distribution) and
that of mass M p (or u(r})) of a typical model of the type introduced above (ihe last
type with the relativistic correction P< cc)/in the high density region, are shown in
Figure 33, This corresponds o a mode! with S =63, b =10!? gm/cms,,

PCe 1040 dynes/cm2, M~1.850 and R~ 6.5 km, The gencral shape of this kind
of curve is not only typica! of Skyrme~Cameron type models, but applies to almost

all kinds of models from those of an ideal Fermi gas to the most complicated modeis
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of mixtures under complicated interaction forces, provided that the central density

is the same. For instance, the density profile in Figure 33 is similar to the one of
the curve (1) in Figure 36 obtained for a model of a Levinger-Simmons type potential
VB applied to pure neutron gas. The conclusion Is that the shape of the density
profile {and also of the mass profile) is determined by the value of the central
density, This point is to be investigated later,

Some of the interesting properties of the final models of the Skyrme-Cameron
type are summarized in Tables 8 and 11a. Table 8 presents the results obtained by
Cameron and introduced in Section IV~2f which are found to be identical with the
results of this section for £ €< 100 gm/cms, ard Table 11a presents models con-
structed by the present writer in higher density region where all the required modi-
fications have been applied (P €, etcc). Those results will be compared, shortly,

with the other models of a real gas.

d, Neutron Star Models of the Levinger-Sirnmons Type

The next series of neutron siar models have been constructed through the use
of the equation of siate for a real gas consisiing of a pure neutron configuration in
which the interaction potensials are of Levinger-Simmons type introduced in Section
lli-4f. Because of the importance of this type of model in the present research, let
us review some of the conclusions of that section. The equation of state was con-
structed in a parametric form, namely P = P(t) and € = Z(1), Both P(t) and € ()
consist of a kinetic energy term and an interaction potential term. The kinetic
energy parf denoted by subscript KE is just the relativistic expression for nor-inter=

acting particles
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£ VE = ;< (sinh t = 1) (4-8)
= . - Qe b
PKE 3 K (sinh t = 8 sinh 5+ 3t) (4-9)

The potential term involves the static and velocity-dependent parts of the ordinary

and the exchange integrals v, . ,v_,w. Vv. and o, are given in the
< g of "o’ e’ %e o

)
analytic forms - Cy k3 and Coy kfs respectively, where Cy and Co are constants,
and Ve and g, depend on the Fermi wave number kf in a complicated way and
were solved for grephically, Three types of potenticl were suggested, Vg Vg

and vy, which depend on the different coefficients of the four terms introduced.

Due to a poor fit to the experimental data in the region of greztest interest, Vgl Was
simply discarded in the present research, and vg and vy were used. The basic
properties of these two types of potential are summarized in (3-51) and (3-52). [
will be recalled that vg s a square well potential with a tail of the Yukawa type
and v, is a complicaied combinarion of exponentially decrcasing terms which in
effect gives rise to same kind of properties as VR The major difference between

va and vy is that the coefficients, especially of the repulsive terms, are much
larger for vy than for vge In low density regicns {up to about ?N10]3 gm/cms)
the difference between the two is quite small as Figure 24 indicates, but as the
repuisive terms bagin to dominate over ihe rest, the potential Vy goesup much
faster than Vg * giving higher pressure at a given density. larger prassure af the
same density produces the possibility of a larger total mass of the siar, and we expect
larger masses to be associated with vy than with ve at the same central density.

This will be confirmed shortly. These two potentials of course do not exhcust all the

possibilities of interaction forces, nor do they give upper and lower limits fo the
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possible models of different nuclear forces. However, noting the highly different
behavior of the two in high density regions (the regions which are critical in setting
an upper limit to stable configurations); it is hoped that these two contrasting models
which are fairly consistent with experimental data may represent the probable limits
of uncertainty of physical reality. Besides Vg and Vs the straight average of the
two, v 0y’ was also used in constructing a third kind of model of the Levinger-~
Simmons type,

We have seen that the Levinger-5immons nuclear potentials are expressed
as a function of kg but because kg is directly related to t through (3-30a) and
(3-47) the potenticl terms are expressible in terms of t also, In this way, by
choosing t os the constant of integrotion, we may proceed o carry out the inte=
grations as before. However, due to some technrical problems it was concluded that
it is more convenient to choose F°, the pressure at the center of the star in relati-
vistic units, as the parameter of integration this time, Since the equation of state
is expressed as a function of t, it is simplesi if P and € (and f m) are calculated
in terms of t first, Therefore, the following method wos adopted in the actual
integration: In a separate subroutine, pressure, energy density, motter density,
number density, etc., and other rcleted interesiing cuantities have first been cal-
culated separately and then listed in terms of t, with the interval At of 0,01,
extenaing from =0 to t=16, which should cover a region far beyond the mcjor
region of interest, The tcble of 1600 such sets of values was used as the input to the
main progrom. Therefore, once P is specifiad, the densitics £ and ij, ¢, and

other interesting quentifies were obtained by the use of the interpolation subroutine
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operating on this input table. Except for this minor change of procedure, the inte~
grations were carried out in the same manner as outlined in earlier sections (IV-3,
a, b, and c). As before, the equation of state was switched overto P= € assoon
as this asymptotic valuve was reached,

The results are summarized in Tables 12, 13, 14 and 15, and Figures 34, 35
and 36, In the first three tcbles the notation is as follows: P is the central
pressure in relativistic units (i.ec, c =G =h =1), P is the same in dynes/cmz, R
is the coordinate radius (or the observable radius), M, Mp ’ MB and M‘B are
gravitational mass, proper mass, and two kinds of binding energy, respectively, in
solar mass units My . fnc is the relativistic parameter t of neutrons at the
center of the star. in Table 15, o and a, are two kinds of packing fractions,
944(R) and grr(R) are time metric and the radial component of the metric

g . evaluated ai the surface of the star.
?(R) is the gravitationa! red shift, To make the physical meaning of these quantities

clearer, some of the definiijons given carlier are summarized below:

Mv/z [ [T b EFVT=Me7 i (4-10)
)/-MTJZ ECJ"Fan ~1DVE7 Mo M

where

" .
M = S/,tfﬂ'ﬁ /Zfz\/ - Fan A= )0
° ‘o

a = MB/MP H GZ:‘M'B/M



o TABLE 12, Neutron star models with vg (P €), where P° is the central pressure in relativistic unis, M'g is a quantity as
N defined by (4-10), and othes symbols. are those introduced in Tables 8 and 9.

po log &%(cgs) | log .w:o,?mg log Pegs) | R(km) M Mg | My/Mg | i/ Mg z._\zo i ©

5 x Houw 12.5168 12.5158 30.5072 35.7977 | 0.04850 0.04857 0.00007 8.48 x Hoxm 0.325
5 x Ho..m 13.1571 13.1155 31.5072 27.4937 | 0.08406 0.08442 0.00036 3.42 x Hols 0.531
5 x Honm 13.8357 13.8316 2.5072 20.1809 | 0.12654 0.12743 0.000849 0.001107 0.387
5 x 107F | 14.5864 | 14.5754 | 33,5072 | 14.2981 | 0.14723 |0.1u891 | 0.00168 |0.00237 1.5t
5 x 1073 | 15.1432 | 15.1167 | 34.5072 | 8.5150 wo.Somm | 0.19375 | 0.00350 |0.00692 2,274
5 x 1072 | 15.5300 | 15.4763 | 35.5072 | 6.1902 |0.54178 |0.57160 | 0.02982 |0.06701 2.899
5 x 10°% | 15.9545 | 15.8163 | 36.5072 | 5.2031 Wo.mmﬁw 1.0914 | 0.1322 |0.3064 3.598
5 x 10 16.5535 Hm..SB 37,5072 | 4.0716 Moummﬁm 0.95762 | 0.07047 | 0.4365 TN
5 x 101 17.5535 | 16.5009 | 38.5072 | 3.7859 | 0.7u204 | 0.72631 | -0.01663 | 0.3938 5,514
5 x 10 @ 18.5535 | 16.9671 | 39.5072 | 3.9517 | 0.75814 | 0.74640 | -0.01174 | 0.3976 6.560
5 x 10 3 19.5535 17.3366 40.5072 3.9392 m 0.76316 C.76264% -0.00652 | 0.4036 7.530
5 x 104 20.5535 17.7069 11.5072 3.9256 0.76461 0.75592 -0.00869 | 0.4079 8.73

5 x 10 > 21.5535 18.0788 42.5072 3.9303 0.76468 0.75794 -0.00674 § 0.4091 9.85

5 x 10/ 23.5535] 18.8258 | u4.5072 | 3.9299 | 0.76501 | 0.75651 | -0.00850 ; 0.4082 12.12
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TABLE 13, Neutron star models with vy (P £ €). (The symbols are those introduced in Table 12.)

p° log €(cgs) | logo %?mmv log P(cgs) | R(km) WMy | MpPMg | Mg/Mg 1 ...s.m\ Mo | 1,°
5 x POIF 14.3375 14,3178 33.5072 14.154 0.25489 0.25517 0.00028 0.00607 1.277
HO|w 14.4713 14,4476 33,8082 13.313 0.34958 0.350868 0.00130 0.01184 1.406
5 x HDlw 14.7569 14.7261 34,5072 12.371 0.77254 0.79504 0.02250 0.06152 1.723
HDIN 14.8724 14,8402 34,8082 12.151 1.0588 1.1177 0.0579 0.1212 1.871
5 x HOIN 15,1619 15.0985 35.5072 11.333 1.7674 2.0274 0.2600 0.4183 2.247
HOIH 15.3035 15.2100 35.8082 10.707 1.9385 2.2844 0.3459 0.5804 2.425
5 x HOIH 15.6908 15.4660 3€.5072 9.008 1.9274 2.2812 0.3638 0.8313 2.880
10 15.8905 15,5763 36.8082 8.366 1.8164 2.0998 0.2834 0.8590 3.094
5 x 10 16.5535 15.8842 37.5072 7.586 1.5571 1.6589 0.1018 0.8079 3.75
HOH. 16.85u6 16.0081 37.8082 7.579 1.4961 » 5648 0.0688 0.7859 4,034
5 x HOH, 17.5535 16.2807 38.5072 7.8357 1.4915 1.5u483 0.0573 0.7751 4,700
5x 10 2 18.5535 16.6573 39.5072 7.95L 1.5414 1.6260 0.08u6 0.8070 5.695
5 x 103 19.5535 17.0307 40.5072 7.898 1.5345 1.6160 0.0815 meHDm 6.7u42




TABLE 15. Neutron star models with v

tables 8, 2 and 10),

241

B Vy and Voy (the symbols are those introduced in

cz,% log f;(cgs) logyo N a a, 9,,®) -'g"(a) PR)

| |12.5158 |5.81 x 1077 [0.00244 [1.75 x 1073 [ 0.996 |1.003 | 0.0020

f 13.8316 |1.524 x 10°° |0.00700 {0.0087u 0.982 |1.018 | 0.00924

5 15.1167 |2.32 x 10°° |0.0181 |o.0364 0.93u2 |1.07 | 0.0329

‘ 15.4763 |6.85 x 10°° |o0.0524  |0.124 0.7u4 |1.3u8 | 0.128

| 515.8163 1.32 x 1007 |o0.121 0,320 0.460 |2.18 | 0.270

| % 16,1661 |1.146 x 10°/ |0.0735 |0.493 0.360 |2.78 | 0.320

E’ 16.9671 |8.94 x 10°° |-0.0157 |0.52u 0.616 |1.62 | 0.192

% 17.7069 |9.05 x 10°° |-0.0115 |0.535 0.612 |1.63 | 0.194

% l1s.8258 |9.05 x 10°° |-0.0112 |0.535 0.610 |1.64 | 0.195

 |w.3178 |3.05 x 1056 |0.0011  |0.0238 0.947 |1.056 | 0.0265

, 1.7261 |9.51 x 10°% |0.0287 {0.0799 0.816 |1.224 | 0.0920

: 15.0995 [2.42 x 10°/ |0.128  |0.237 0.542 |1.845 | 0.229

’ '>_>‘15.2100 2.74 x 10°7 |0.151  |0.300 0.468 |2.14 | 0.266

' % lls.u660 |2.30 x 107 | 0.159 0.431 0.372 |2.69 | 0.314

| §> 15.8842 |1.98 x 1057 |o0.0615 |0.519 0.396 |2.52 | 0.3018

‘ ; 16.2807 |1.85 x 10°/ 10.0370  |0.520 0.440 [2.28 | 0.280

] Z 17,0307 |1.93 x 10°7 |0.0505 |0.533 0.427 |2.34 | 0.2865

' 12.3842  |4.93 x 10°° |u.g5x10-3|1.u2x10-3 |0.997 |1.002 | 0.00159

 [3.6739 |1.374 x 10°° |0.00646 [0.00737 0.984 |1.017 | 0.00790

| m[4.7312 |5.66 x 10°° |0.0354  10.0520 0.883 |1.13 | 0.0583

! 5-15.3069 2.12 x 10°7 |0.135 0.263 0.516 |l.04 | 0.2u2

ti; 15.8654 [1.80 x 10°7 |o0.1u62  |0.500 0.376 |2.66 |0.312
E’ 16.4847 [1.50 x 10°7 {0.0283 |0.520 0.450 |2.22 | 0.275
% 17.4107 |1.55 x 10°7 |0.0217 |0.528 0.438 |2.28 |o0.281
Z l8.5327 |1.55 x 1057 |0.027%  |0.528 0.u40 |2.27 |0.280
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Z is the total energy density, and P is the total matter density (=m, n, fora
pure neutron configuration, where my, is the neutron mass and n_ is the neutron

n

number density).
N =JP4-’TT/Y|. (/L)/ZZ\/‘ 9/7./1 Y (=Mp/m , for a pure neutron gas).

n(r) is the total baryon number density at r.

- m:(f—y_u(/z)//z)"
(y(R).‘: % = 1.4'7 (M/M@>/R({m) (4-11)

3., (R=1-29(R)=-1,/9,, (k)
The relctivistic system of units is adopted unless otherwise specified. From these
definitions it is clear that Mg is the binding energy with respect to the total mass
bafore it has been assembled as a star or the total binding energy; while Mé, the
macroscopic mass defect, is the difference between the tota! mass in the absence and
in the presence of a gravitationc! field (note that in the absence of a gravitational
field, ga= =1 and M’y is zero); and thus it corresponds to the binding due to

R
gravity oniy (with microscopic binding energies excluded), -

We noted that My, and hence ¢, becomes negaiive when log ge 2 16,7
for an ideal gas (Table 10), Negative binding energies do also occur for models with
Vg (sec Table 12 and 15 or Figure 34), but the gravitational masses are always smaller
than the proper masses for other configurations (i.e. for v v VBV and the Skyrme
potential). An explanaiion of this will be attempied in the next section (IV-4), For
the sake of comparison, it is more convenient to speak of the fractional bindings «

and a, than of My and M'Bn For the ideal gas (Tabie 10), the maximum a is

around 0,07, while for Vge Vyr and oy it is 0,12, 0,15, and 0,16, respectively,
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For the final Skyrme=-Cameron type models (Table 8 and 11a), a goes as high as
about 0.2, The aj obtained by Ambartsumyan and Saakyan for a real hyperon gas
behaves somewhat differently from those of Vg s Vye Vgy and of the Skyrme~-type.
Their a; was defined improperly, especially for a mixture of hyperons, and this
may be a cause of the difference. a, increases with the increase of central density
in all models, approaching asymptotic values of about 9.53 to 0.55 as £+ o,
depending on the model. This means that in the high density limit, the macroscopic
mass defect due to the presence of gravity becomes even greater than half the
observable mass,

Values of 944(R) and grr(R) in Table 15 reveal that even at the surface,
curvature of space due to the gravitational field is quite large for some of the dense
stars (of central density 0 mc,?, 1015 gm/cm3). The deviation of the metric from
the Euclidean meiric is much larger for models of the Levinger-Simmons type than
for models of an ideal Fermi gas. This is because the effect of the interaction forces
between nucleons (or baryons) is to make the ratio M/R larger than for the case of
non-interacting particles and the curvature depends on M/R through the grevitational
poteniial.  On examining these tables, we see that the maximum curvature at the
surface and the maximum red shift both occur when the central density is somewhat
higher than that corresponding to the maximum mass. For instance, for vy the
maximum mass of about 1.94 M@ occurs when log ?mcr\a 15,3, while maximum
surface curvature and red shift occur at log § S~ 15.47, The solid curves in
Figure 31 shows the central density-radius relation for a mixture of baryon gases, but

similar curves are obtained for the models Vg and vy of pure neuiron gases also,
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The general behavior of the radius exhibited in Figure 31 applies also to pure
neutron gases, except for the exclusion of the envelope effect.

The total baryon numbers N of the star are listed in Table 15. On comparing
the values in Table 15 with those given by Sackyan (Table 9), we note that the N
of all our models are much larger than those of his ideal gas models, and that the N
of the models VY and VB y ore somewhat larger than those of his’real ‘gas models,
while our models VB and his/'realllgos models have more or less the same values for
N, This is easily seen from the fact that for a pure neutron configuration N is just
the total proper mass divided by the neutron mass, that the proper masses of all our
models are much larger than that of an ideal Fermi gos, and that these of our models
Vy and Vgy are larger then those of Saakyan's'real ‘gas models, while the masses
associated with our Vﬁ models and his“real ‘gas models are similar. A very inter=
esting property of N is that with an increase of centrai density, N first increases,
reaching a maximum and then decreases; after reaching a minimum it increases
again a little, before reaching a constant value at ?mc =, \hen the total baryon
number N is plotted agcinst tofal gravitationai mass M, the generai behavior of
Figure 5 in refcrence 15 is also revealed for all our models; that is, an assembly of
N nucleons generally hos cne equilibrium configuraiion when N is smaller
than a certain value, say N 1; three equilibrium configuiations with different values
of M exist in the intermediate rcgion,Ni <N <N2; two equilibrium configurations
in the higher N region N2 <N<N3 (vhere NS >N2 >H1); and no equilibrium
solutions for\y >Ng3.

Let us now turn fo Figurc 34 where the cential density of Vo models is
/ B
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plotted against totol gravitational mass (the solid curve) and total proper mass (the
dashed curve) of the star. The maximum mass comes at about M ~ 0.98 M@ and

MP ~ 1.1 Mg, where log pmc ~ 15,96 and R~ 5 km. Then crossing of the gravi-
tational mass track and the proper mass track in the pmc - M plane occurs at

log pmc ~ 16,3, M~ Mp ~ 0.85 Mg and R ~ 4 km. The ceniral singularity
develops at M~ 0.77 M, Mp ~ 0.76 Mg and R~ 3,93 km. By using the same
argument employed by Oppenheimer and Voikoff, we find that all the stellar con~
figurations in the upper branch of the big hump are unstable, Stable models lie in
the region 10 55 Prn° < 16'6 gm/cm3. The second small maximum exists at around
log  p.°~17.4 and can be seen in Table 12 but is hardly noticable in Figure 34,
Nexi, let us furn to Figure 35 where the ceniral maiter density of Vy models is
plotted ogainst gravitational and proper mass (both dashed curves refer o pure
reutron stars), The maximum masses (M ~ 1.94 MO and Mp ~ 2,3 Mg) occur at
log f?nc ~ 15,3, where R~ 10.5km. A singularity develops at the cenier when
M~ 1,54 Mg MP ~ 1.62 MO and R~ 7.2 km, Again the second maximum is

hard to see in this figure but it is casily recognized in Table 13. For log prr?5,13°7'
models of type \/ﬁ and VY with the same central density almost coincide. That this
should occur is obvious from the fact that these two potentials are almost identical

in regions of small density. A striking result is that the maximum mass of Vy s

twice as large as that of V. The major difference between V_ and VB lies in

Y
the larger repulsive term for Vy which is due to the higher value of the coefficient

of this terms  Cne important conclusion deduced from the above result is that one of

the decisive factors for determining the parameters of neutron stars is the exact form
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of the interaction forces between ncutrons (or between baryons in the case of a
baryon gas).

It is interesting to compare these resulis with Skyrme type models(Figure 32).
In Figure 32, the central density refers to the energy density £° while that in
Figures 34 and 35 refers to the matter density ppCe But by inspection of these
figures we easily recognize that Skyrme's curve comes between the Vg curve and
the V. curve in the pc - Mplane, One major difference between the Skyrme
type models and those of the Levinger=-Simmons type is seen in the low density
region; namely, in the former, the minimum mass (about 0.02 M@ ) comes at log pc

~ 14,5, while in the latter the minimum mass (af the same p®) is much larger
af about 0. 2 M, . This is seen to be due to the large difference between the
Skvrme potential and Levinger-Simmons potential in the region 3014,5 p< 1015
gm/cm3 covered in Figure 24. In this region the Skyrme potential has a much
larger attractive term which lowers the pressure considerably and resuits in smaller
masses. For p®< 10]3 gm/cma, Var Vys VpY ond Skyrme all approach the
asymptotic line of non=interacting particles in Figure 24 and oll models of the pure
neutron configuration converge to the same curve for o€ < 10! 3 gm/cm3.

The \/{_3 y medels come nearly midway between those of Vf)‘ and Vy
Characteristic feafures seen in other models of real gases (\/{3, Ve and the Skyrme
type) are seen in the Vﬂ)’ models also (Tables 14 and 15). The maximum masses
are M~ 165 My, and MP ~ 193 M p ai op"~ 10 15:9 gm/cm3 with R ~ 8 km,
The deviation of the VB y models from those of Vﬁ takes place at oround p®~ 10 "

gm/cm?’° Anociher smat! moximum is seen at log pmc ~ 16,9, The central density-
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mass curves are not shown for the V,DY models because they are simiiar to the
final Skyrme-Cameron type models (Figure 32) in high density regions, while in
low density regions, they converge to other Levinger-Simmons type models. The
central singuiarity develops for Vg y when M~ 1.26 M, M ~ 1.3 Mg, and
R~ 6.6 km,

To see the generai features of the density distribution within a star, the
density profile (in the form of t,° vs. r curve) of three different models of the
VBY type with the low, medium and high centra! densities are plotted in Figure 36

and labled (3), (2), and (1). Some of the characteristics of these models are listed

below:

Models P Log P° | Log €€ | Log P MR My t°
(1) 3 x 104 41,23 20.33 17.41 1.2541 6.5811.292 | 7.85
(2) 3 37.29 16,29 | 15.8 1.4 |66 (1.6 |37
(3) 3 x 1074 33.29 | 14,20 14,27 0.135(15.1 {0.188 | 1.24

Units c=h=G=1 cgs cgs cas Mo km Mol -

This graph clearly shows how the singularity is developed at the center at a finite
stellar radius and mass, With a further increase in the central density, the distortion
in shape of the type seen in the curve (1) becomes more and more exaggerated until
in the limit as p© — o, we have all of the matter located ct the center. [t is very
hard fo understand why such a configuration can still possess a finite radius. However,
the present treatment of the problem may break down before such a limit is reached.
We come back to the discussion of the difficulty associcied with these singularities
later. The general behavior of density profiles exhibiied in Figure 36 (which was

obtained fer Yoy type models of pure neutrons) with an increase of ceniral density
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has also been seen in all the other kind of models constructed in this research.

e. Composite Models of the Levinger-Simmons Type

So far all the models constructed in this section had pure neutron configurations,
that is, they are "neutron star models" in the literal sense. In reality, we have seen
that such a gas is contaminated with other sub~atomic particles, whose kind and
conceniration depends on the density we are dealing with, In highest density regions,
it is a mixture of various kinds of baryons, mesons and leptons, In lowest density
regions neutrons are not even allowed to exist and the equilibrium matter consists of
heavy nuclei and elecirons. In the final set of models, the final composite equation
of state constructed in Section lil-6 was used. Before proceeding, let us review the
conclusions of that section. The equation of staie in the major region was expressed
as equations (3-73) and (3-74), the relativistic Levinger=Simmons type equations,
where in effect everyihing was expressed as a function of a single parameter t. . As
soon as this equation of siaie storfs to violate the relativistic requirement P< ¢, the
equation of siate was replaced by the asymptotic equation P= & as before, In the
region p < 10] 3.8 gm/cm3, we are dealing with a mixture of neutrons, electrons
and positive ions (as we lower the density, more heavy ions appear while proton

11,3 g.'n/cm3,

numbers decrease rapidly). When the density becomes less than about 10
the neuiron concentration repidiy decreases to zero and the moin pressure comes from
degenerate electrons. There is a transition region in this vicinity where the main
pressure contributor changes from elecirons to neutrons or vice versa. In a stellar

interior the density decreases as we go radially outward and there is this transition

from the neutron phase to the eleciron-nuclear phase at some boundary within the
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star. V/e call the interior part whose major constituent is neutrons and other baryons
the'n eutron core," and the outer layers of an electron~nuclear configuration "the
electron-ion envelopes" for convenience. In most of the previous models such
envelopes were simply neglected. However,

our resulis soon reveals that such a simplification is net justified. The final com-
posite equation of state in Section lil-6 automatically goes over into the electron=
nuclear equation of siate in low density regions, takes interaction forces between
baryons into account in higher density regions through a Levinger-Simmons type
potential acting on all baryons, and transfers to the asymptotic equation P= € in
the high density limit,

13.86 gm/ cm3, the equations are expressed in terms of o and

Upto p =10
thereafter in terms of by The general procedure employed was as follows: First,
fromlog p =0 to log p =13.86 with the interval A{log p)=0.02; P, €, Pr b,
and all other related quantities cf interest (electron number densities ng, baryon
number densities n, portial densities and pressures of components, etc. ) were calcu-
lated in the manner described in Section 1116, Al! the parameters and quantities
absent at a given density p were set equal to zero (for instance, in the regions of
lowest density there are no neuirons and nn =t, =0, eic.,), At the transition point
the value of t, corresponding to log p =13.8 was used cs the initicl value and
thereafter all quantities P, €, p, etc., were calculated as functions of tn from the
initial t, to t, =16, with the interval Aty =0.02, The equation of state thus appears

as an input table which lists a sct of values of P, €, p, etc., to the main program of

integration. Special care was tcken to sec that everything is continuous at log p =13.86.
g gp Q
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In the main program, the central pressure P° in relativistic units was chosen as the
parameter of integraticn, and for each P, the corresponding £, p, tn, etc., were
interpolated through the interpolation subroutine. In this manner the input table of
the equation of state wes prepared. The step by step integration was carried out by
Adars’ method as explained earliers Another major difference (besides the differ=
ence in the equation of state) is that the integration was carried out to the point
were log p =0 (that is, p = | gm/cma), (Cur equation of state now includes the
white dwarf region and the former method of terminating the integration at log p =8
is certainly no longer justified.)

The results obtained in this way explain the genera!l behavior of dense stars
from the lightest of these {in the white dwarf region) to the densest (with infinite
central density). Some of the models obtained in this way arc listed in Tables 16,
17 and 13. In the first, the various interesting quantities introduced in the previous
sections are listed for composite models of the type ver in the second, for composite
models of the vy type, and in the third for composite models of the type of either

VvV, or V‘/ in the low density region where these two types of models are identical

€

because of the absence of nuclear forces. In the previous seciion, the same quantities

were calculated for modals of a pure neutron configuraricn with Vg« Vy and V3y.
To better see the effect of hyperons, pure neutron models of ihe vy type
(dashed curves) and composite models of type Vy (solid curves) are ploited fogether
in the p°-M plane in Figure 35, Here, the difference is clearly noticable. The
major differences are thai: (1) af the same central density, composite models have

smaller masses than pure neuiron models ncar pc < 10]5 gm/cm3; (2) for
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q TABLE 16. Composite models with Vg, (The symbols are those introduced in Tables 3 and 10.)

log & €(cgs) log ?.m (cgs) log P€(cgs) R(km) W KP >>D\ Mo >>w\ Mg “ a m\,&%v ..m:.%v @ (R) ;
13.6798 13,6732 32.2853 1Q07.33 0.13409 O“Hmwmwﬁ -0.00062 | —0.0046 0.9906 1.008 0.00469
13.8352 13.8281 | 32.5072 124.847 0.13367 oowwwmmw

14.4232 14.u4119 33,2853 36.777 0.1460uU 0. 14650 0.000u46 0.0031 0.9886 1.013 0.00567
14,5943 14.5805 33,5072 30.435 0. 14624 - 114688 w A

15.2588 15.2316 34.6533 10.032 0.19423 w 0.19701 w 0.00278 W0.0H:H 0.9430 1.06 0.0285
15.4983 15.4677 35.2853 6.602 0.35286 M 0.36285 w m

15.6213 15.5833 35.6533 5.398 0.52948 0.57260 w 0.0u512 M 0.0789 0.736 1.358 0.132
15.8543 15.7798 36.2853 5.263 0.85488 0.99961 W )
16.0952 15.9u89 36.8082 4,713 0.96640 1.17u09 | 0.2077 0.177 0.398 2.51 m 0.301
16.3740 | 16.1101 | 37.2853 |u4.210 | 0.93285 | 1.10785 |

16.5535 16.2004 37.5072 4,011 0.89501 1.04442 | 0.149u 0.143 0.344 2.91 : 0.328
16.8546 16.3369 37.8082 3.820 0.83741 | 0.96986

17.3317 16.5321 38.2853 3.708 0.76583 | 0.82676 m 0.06103 0.0738 0.392 2.55 0.30u
17.5535 16.6182 38.5072 3.720 0.74908 0.798u46

17.8546 16.7326 38.8082 3.768 0,74278 0.78790 0.0u512 0.0574 0.u420 2,38 0.290
18.3317 16.9108 39.2853 3.848 0.75477 0.80536

18.8546 17.1043 39.8082 3.874 0.76981 | 0.82915 0.05934 0.0717 0.416 2.40 0.292
19.8546 17.4736 | u40.8082 3,851 0.77250 0.83492




TABLE 17, Composite models with Vy (The symbols are those introduced in Tables 8 and 10.)

8

logg.S(cgs)! logp S(cgs) | log Pe(cgs):  R(km) MM, Mo/ M, My/Mo | o |gu®) 0, ® | SR |
13.5628 | 13.5571 |32.1092 |2.609x103 | 0.40238 0.40172° | -0,00066 | -0.00164 | 0.9996 | ~1 2.26_,
13.9795 | 13.9720 |32.8082 |u7.388 0.15115 ' 0.15194 m“ m g
14,1366 | 14.1290 |33.1092 |29.531 | 0.18582 | 0.18751 | 0.00169 Wmo.oomom | 0.982 M 1.02 |0.00928
14.3900 | 14.3799 |33.6533 | 18.079 m 0.30989 | 0.31507 wm | |

14,4567 | 14.4456 | 33.8082 me.mmw 0.36781 ' 0.37567 | 0.00786  : 0.0210 m 0.935 | 1.07 0.032
14.5826 | 14.5687 | 34.1092 mws.mmo 051901 ! 053740 W | | W
14.8027 | 14.7795 | 34,6533 MHw.wH: 0.950s0 | 1.1063% | o0.1u85  [10.132 ' 0.790 ' 1.205/0.105
14.9896 | 14.9504 |35.1092 | 12.505 1.41955 w 1.58181 % | |

15.0644 15.0155 35.2853 M 12.165 M 1.59302 m 1.80608 0.213L ~ 0.118 0.614 .~ 1.63 |0.193
15.1631 | 15.0099 | 35.5072 | 11.689 m 1.778u2 “ 2.05876 ” |

15.2310 | 15.1557 |35.6533 | 11.3318 | 1187125 ©2.19331 | 0.3220 (0.147 | 0.51% ; 1.95 |0.2u3
15.3055 | 15.2143 | 35.8082 mwo.ome 1.ou107 | 2.30023 i | | |
15.5574 | 15.3938 | 36.2853 w@ummqm 1.97802 | 2.37465 | 0.3966 || 0.167 | 0.400 m 2.50 10.300
15.6893 | 15.4769 | 36.5072 | 9.1320 1.92512 | 2.29567 |

16.3317 | 1.5.8043 | 37.2853 | 7.8146 1.62779 | 1.81039 | 0.1826 0.388 | 0.306
16.5535 | 15.9002 | 37.5072 | 77026 1.55782 | 1.68273

17.3317 | 16.2135 | 38.2853 | 7.9106 1.47943 | 1.55027 | 0.0709 0.452 0.274
18.3317 | 16,5953 | 39,2853 | 8.1079 1.53742 | 1,63872




TABLE 18.

Composite models with VB or V

(The symbols are those introduced in Tables 8 and 9.)

in low density regions.

log &%cgs) | log p r:(cgs) log P{cgs) R(km) M/M, Mp/ M,
6.28406 | 6.28403 22,8082 | 9.101x10° | 0.42483 | 0.42599
6.95173 | 6.95167 23.8082 |6.782x10% | 0.66838 |0.67001
7.65431 | 7.65416 24,8082 | u.842x103 | 0.90802 | 0.90988
8.16160 | 8.16135 25.5072 | 3.721x10° | 1.03641 |1.03827
18.38262 | 8.38251 25.8082 | 3.209x10° | 1.07884% |1.08067
18.91258 | 8.91209 26.5072 | 2.465x10° | 1.1sus0 |1.14u80
9.15375 | 9.15318 26.8082 | 2.185x10° | 1.13933  |1.14079
9.71546 | 9.71u64 27.5072 | 1.654x10° | 1.0523¢ |1.05321
19.95789 | 9,95692 27.8082 | 1.449x10° | 0.99789 |0.99857
'10.5214 | 10.5201 28,5072 | 1.062x10° | 6.86027 |0.86067
110.7643 | 10.7627 28,8082 | 9.234x10° | 0.30126 |0.30158
11.7366 | 11.7319 29.8082 |5.798x10% | 0.62750  |0.62765
12,3062 | 12.3021 30,2853 | 6.748x10° | 6.59651 |0.59581%
12,48 12,47 30.51 7.069x10° | 0.58u9  [0.s58u0"
13.0070 | 13.0022 31.2853 | 1.300x10° | 0.56300 |0.56176"
13.153 13,1474 31.5072 | 1.u57x103 | 0.56893 l0.56771%

256
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pcz/ 1013-2 gm/ cm3, the composite models have larger masses than pure neutron

models; (3) for still higher densities log pcz 15.8, the gravitational masses of pure
neutrons and composite models almost converge to a common value, while the proper
mass of the composite models remains larger than that of pure neutron stars up to the
singular point (p€ ~ ). The smaller mass of the composite models in lower density

14, p° < 1014:8 gm/cm3, the composite

regions is easily explained. In the region 10
models consist of neutrons, protons and electrons, At slightly higher densities they
contain P mesons as well, and for pcz/lO]5 gm/cm3 the appearance of hyperons
and excited nucleons lowers the neutron number density appreciably as is seen in
Figure 21. As a consequence, the top of the Fermi sea of neutrons is lowered and

the partial pressure of the neutrons is depressed, Up to about log p® ~ 15,3 the
partial pressures of other beryons are not sufficient to compensate for this decrease

of neutron pressure, and the over-all effect is to decrease the total pressure below
the value it would have in the absence of other baryons. Lower pressure results in
smaller toial mass of o ster with the sume central density, as can be seen in Figure 35.
To explain the larger masses of composite models as compared with pure neutron
models in higher density regions, it may be pointed out that in general the balance
between gravity and degeneracy pressure is acquired at higher matter density when
the particles responsible for the degeneraic pressure are heavier, For instance, we
have seen that the electron degencracy fails to support the gravitational force for
o> 10 gm/cms, while neutron degeneracy pressure is able to balance the gravi-

tational force in the much higher density regions where 1016 > o> 1014 gm/cm3.
4 ~ PR

We have olso noted that the second crushing point (Cppenheimer-Volkoff mass limit)
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is the result of the failure of neutrons to supply sufficient degeneracy pressure to
counterbalance the increasing gravity due to increasing density. When some sub-
atomic particles heavier than neutrons supply degeneracy pressure, this crushing is
expected to occur at a higher density than in the case of pure neutrons as can be
predicted from the same analegy used between electron degencracy and neutron
degeneracy. As a consequence the stable regions of composite models (with heavier
baryons than neutrons) are enlarged to include higher density regions and the crush-
ing point occurs at a higher central density and, hence, at a larger mass. Due to the
relatively small difference between the masses of ground statc nucleons and the
heavier baryons, this effect is not so significant as in the casc of the difference
between the neutien and electron configurations, but it is appreciable enough to
increase the maximurn mass point from about 1,939 to 1.980 for the gravitational
mass, and from cbout 2.280 to 2.370 in the ccse of the proper mass when degenerate
hyperons become effective enough as pressure supnorters. Ve hove been discussing
only Vy type models ubove, but hyperons produce exactly the same kind of behavior
in the models of type VB also, from which it is concludad that the preceding indi-
cates a general effect of hyparons on neutron stors, Sackyan's models also give larger
maximum mass for hyperon stars than for pure neutren sicrs, V/hen all particles become
relativistic {the kinetic einergy much larger thon the rest mass), the mass difference
between particles becomes insignificant because Fermi energy and pressure then
depend on number density but are independent of mass. This conditicn, however, is
nct reached until the total matter density reaches about 10] 7 gm/cm3 (3 =mc2 for

a neutron gas at log p© ~ 16,5), far beyond the crushing points of either pure
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neutron stars or hyperon stars. Before this point is reached, the equation of state
switches over to the simpler form P= €, That there should be a large divergence
between the dashed curve and the solid curve in Figure 35 for densities below

1014 gm/ em® is obvious from the fact that in the composite models the electron
partial pressure is becoming dominant, and with the rapid decrease of neutron numbers
with a fall of density the total pressure of the composite models is much larger than
that of pure neutron stars due to the presence of electron degeneracy. In effect,
qualitatively, we see that the difference between the solid curve and the dashed

ol4

curve in the region pcfjl gm/cm3 in Figure 35 gives a rough meosure of the
proportion between the neutron core and the eleciron-ion envelope. For p€< 1011
gm/ cm3, the neutron core completely disappears and we tend toward white dwarfs
as the density is further lowered.

A complete set of cemposite models is exhibited in Figure 37, | think it jo
be extremely interesting to compare this result with that of V/heeler in Figure 26
and of Sclpeter in reference 12, The general agreament betvieen the present models
and those of Vtheeler and Salpeter is satisfactory in the whitc dwarf regions, Wheeler's
medels give a maximum mess of about 1.2 0 in the white dwarf regions. That of
Salpeter ranges from about 1 to 1.40, depending on different choices of composition.
The maximum white dwarf mass of our models is about 1,2, about the same as
Whecler's, but it occurs at o somewhat higher ceniral density (~ 10° gm/cma) than
Wheeler's (~ 10 ) gm/cms)a Cur models come in about the middle of the various

models of Salpeter. Cn comparing the equations of state used by Salpeter, Wheeler

and by the present writer, it is obvious that ir the white dwarf regions, those of the
Y P g
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first two are by far the more complicated and precise. In my models, the more
thorough and elaborate treatment of the variation of composition has been applied
but all the various correction terms which Salpeter took info account in the non-
interacting Fermi gas of electrons are not included. Wheeler neglected such
correction terms in the Chandrasekhar white dwarf regions, but his equation of state
in the lowest density limit (around atomic regions and solid state regions) is much
more elaborate. The conclusion is that for some of the lightest white dwarfs (with
the central density < 104 gm/ cm3) for which low density effects and the corrections
of Salpeter and Wheeler become appreciable, their models are more accurate.
However, the main topic of the present research is "neutron stars" noi "white dwarfs,"
and it is not my purpose here to investigate the deiailed struciure of low density
white dwarfs. Therefore, models with ceniral density lower than 100 gm/ em® are
nof included in my resulis. The main purpose for carrying out the calculations down
to lower density regions has been to show thot the white dwarf regicns and neutron
star regions are joined smoothly by one curve, which shows two major crushing points
(one, Chandrasckhar’s and another, Oppenheimer-Volkoff's), withcut any special
assumptions, An effort clong the same line was made by Wheeler, but the major
aiffercnce between Wheeler’s models and mine is that | have treated the neutron
star regions and the subsequent regions of superdense stars much more thoroughly,
Wheeler's results for P2 10] 3 gm/cm3 are quite uncertain due to oversimplifi-
cations in his equation of state in the heigher density region. Salpeter's main
contribution is also to the study of white dwarfs. Salpeter’s neutron star models

cre based on: (1) Newionian mechanics and (2) tre non-relativistic Skyrme equation
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of state, which causes some uncertainty in his results, But one important result of
Salpeter's work is that it poinied out the possibility of a non-negligible contribution
of envelopes, which is cenfirmed in the present research,

In Figure 37, soiid curves represent gravitational masses of models of type V3
and Vy » and the dashed curves their proper masses. In superdense regions the
crossing of a solid by a dashed curve does not occur, but an interesting result is that
such crossing does occur in the lower density region around 10'2¢ pc < 1014
gm/cm3. This is explained as being an effect of the relativistic electrons as wi Il be
discussed further in Section iV~4, It may be noted that the proper mass does become
less than the gravitational mass in the high density limit for v type pure neutron
gases (Figure 34), but Figure 37 indicates thai this is not the case with composite
models of the same type. It is interesting to note that the prescnce of hyperons prevents
the binding energy from becoming negative. In this graph, the lasi small mass moxi-
mums near 10'7 gm/c:m3 are seen more clearly than in the earlier ones. This hump
has been called "the second hump" in previous discussions, but the whole picture ex-
hibited in Figure 37 may suggest that, strictly speaking, this is the 3rd maximum. The
first maximum is the Chandrasekhar maximum mass near p° ~ 107 gm/cm3, the second
maximum is another major one, the Oppenheimer-Voikoff maximum mass, and the 3rd
one is a small hump rear 10}/ gm,/cm3 at the neck of the vertical asymptotic lines.

To better compars my composite models with those of Salpeter and Wheeler,
central density has been ploited against radius in Figure 38 for each model. Up to
log p°~ 11.5 the agreement between these three kinds of models is quite good. This

indicates that the absence of various correction terms in the clectron equaiion of
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state is perfectly justified for my purpose (for Pcz 107 gm/cm3). In neutron star

regions, Salpeter's second peak is much sharper than the rest, but all four kinds of
model (type vp, type vy, and Salpeter's and Wheeler's shown in Figure 38) show
the effect of the envelopes, At this critical density, the envelopes of Salpeter’s
models extend even fo the size of some of the largest white dwarfs; those of ours to
ordinary white dwarf size. The size of the cnvelopes in Wheeler's models appear to
be much smaller. Most of the models with large extended envelopes lie in unstable
regions (IV-4b) and may not be of phiysical importance, but our final results (parti=
cularly Figure 41 to be shown in Section IV-3f) indicate that this statement is not
necessarily true,

To better see the dependence of the radius on the central density in neutron
star regions, the same relation is plotted on an erlarged scale in Figure 31 for
composite models of \{e and Vy, os well as for the models of an ideal gas obtained
in Section IV=-3b, The radii of the VB and Vy  models for p© < 1010 gm/cm3 are
much larger than those of ideal gases. This is because in the latter, only neutrons
are included, while in models of the V{J& and Vy type considered here, the com=
posite equation of state for electron gases was used. We expect quite an extended
envelope in models with central densities in this region. This graph indicates that
the effect of nuclear forces and hyperons on the stellar radii is not as significant as
on the mass.

The mass-radius relation is shown in Figure 39, Here the portion marked (1)
belongs to the white dwarf regions. Around the region marked (1I) lie a series of

models with exiended envelopes. The model with the most extended envelope is
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shown by the cross marked with its central density value log p© =13.56. Figure 27

shows Vvheeler's results, On comparing these two graphs, we sec that the envelopes
of Wheeler's models are much smaller. In the lower portion marked (l1I) lie a series
of neutron and hyperon stars. The dotted curves represent Ambartsumyan and Sackyan's
models; the branch marked (a) indicazes their ideal gas models and that marked (b)
their real ‘gas models. The branch (a) of the dotted curves and the graphs shown in
Figure 27 all refer to ideal gases and are similar to one another, With an increase
in central density, we come down from the region (l) to (I} ond finally to {111). Due
to different assumptions of interaction forces, in region (11} the curves branch off
to different individual types of models, first reaching a minimum radius, then in-
creasing slightly, and finally, each branch approaches a point with constant mass
and radius as the central density goes to infinity, The center of the curl of each
kind of model, therefore, gives the radius and mass of the extreme model which has
the central singularity. We notice from this groph that Ambartsumyan and Sackyen's
real gas models resemble the Vg type models more than the Vy type. Larger mass
values are associated wiih Vy and Vﬁ Y than with VB and Saakyan's models,

lt was pointed out in the last chapter that the absolute !imit of the equation
of state is P= &, However, there is not yet rigorous physical proof that the state
P> £/3 is actually realized. Therefore, it appears worthwhile to calculate models
with the more restricted limit P< £/3 us the asymptotic equation instead of P< €,
The results are shown in Figure 40, together with the previous models which have
P=C as'the asymptotic equation. Again the solid curves represent gravitational

masses and dashed curves the proper masses, The crosses represent the points where
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pressure saturation takes place, namcly, where the pressure becomes equal to &
or £/3. The pressure saturation occurs at lower central densities for Pg £/3
than for P < €. The requirement P< £/3 results in slightly smaller maximum
masses and in smaller masses at the singular point. But otherwise. the effect is
small. In particular, most of the models lying in the stable branch (almost hori-
zontal portion of the curve below the Cppenheimer-Volkoff crushing point) are
unaffected by the change of the asymptotic equation of state from P= € to P= £/3,

The infernal structure of a model depends cn which type of model we have
in mind, For Vg type models the following applies: The lightest stable neuiron
stars have small hyperon cores at their center, an intermediate layer of neusrons
(with a small amount of protons and leptons), and rather extended outer envelopes
of heavy nuclei and elecirons; medium weight siable models have hyperon cores
occupying about 1/6 total siellar size with large envelopes of neutrons while the
outermost electron~ion envelope is negligible; the heaviest stable models have most
of their mass in the concentrated hyperon core whose size increases rapidly with
increasing central density, Models with ?mc 310]6 gm/cm3 are mainly composed
of hyperons, with thin neuiron envelopes. Due to the lower central densities en~
countered, the VY type models in stable regions have smaller hyperon cores and
larger neutron envelopes. The lightest stabic reutron star models of the Vy type
possess no ceniral hyperon cores but have larger electron-nuclear envelcpes than
those of type Vpe

The major differences between the composite mode!s and the pure neutron star
models may be summarized as (1) the composite models have larger masses and larger

ol4

radii in low density regions (p© < 1 gm/cm3) due to the eleciron-ion envelopes,
Yy reg f P
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(2) the composite models (Vﬁ ‘ VY and VGY models) do not possess negative binding

energies in high density limit due to the presence of hyperons, (3) the composite
models have slightly smaller masses in most of the stable regions due to the presence
of other baryons, (4) somewhat larger masses exisi for the composite models in higher
density regions due to the effect mentioned in (3). The consequent difference in
physical properties can be seen in Tables 16-18 as compared with the listings of
Tables 12-15, In Tables 16-18 the proper masses which are less than the correspond-
3

ing gravitational masses in the low density region where 1012 ¢ ec < 10]4 gm/cm

are marked with asterisks,

f. Final Models of Stable Neutron Stars

Noting that the mcdels constructed in the preceding section are the most
realistic at prescnt, three from the Vg and another three from the Vy type were
selected as models to which envelopes were fitted?:eecr the maximum point, another
from the region of minimum mass (among stable models) and the third from the inter-
mediate region. We have noted that the difference between baryon siars and pure
neutron stars of the same type (VB or Vyr etc.), is relatively small, and that the
Skyrme models, the Levinger-Simmons models of type VB y and the Ambartusmyan-
Saakyan models of real gases all lie between the Vg and Vy type models.  Therefore,
on selecting ons model at the upper, one intermediate and one at the lower extreme
from each of the two types Vﬁ and Vyr we may safziy assume that these six models
represent fairly extreme possibilitics for neuiron stars not only of the restricted kind

of Levinger-Simmons, but also, mere generally, other possible models using different

kinds of potentials. To obtain better values of the model parameters, M, R, etc., the
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intcgrations were carried out again for these six models using closer intervals in the
interpolation table used as the equation of state (that is, the intervals of t, and
log e were reduced from 0.02 to 0.01).

The characteristic properties of the six models are summarized in Tables 19,
20, 21 and Figure 41. For convenience, in the following discussion the various
models are represented by symbols. In the scheme adopted, (1 My, VB) vould, for
example, refer to a model of about 1 solar mess (the maximum mass) of the type VB'
Models are also designated by V§ I, Vp ll, eic,, Vg indicating the type of model
and the symbol I indicating stable models with the maximum mass, 1l wiih the
intermediate moss, and 1l with the minimum mass of that group. The same notation
as was introduced earlier is used in Toble 19, The so far undefined symbols, such
as CV/T (specific heat per unit temperature), etc., will be cxplained later when
such quantities become necessary. In the last four rows, M. represents the mass of
the ncutron core and R the radius of the same core (in the table, they are expressed
as the fraction of total mass and radius respeciively); and 9o (R) and g(R) represent

the following quantities:

g®@- GM/R*

gum%}gm(% 1)1+ 4%%_3)(1_‘ %

—| (4~12)

go(R) s the Newtonian gravitationa! acceleration and g(R) is the general
relativistic analogue on the surface of a neutron star. log g on the surface of the sun is
around 4, that of a typical white dwarf is around 8, and we notice in Table 19 that

log g ranges from about 12 to 15 on the surface of neuiron stars. This also indicates



TABLE 19, Detailed parameters for neutron star models,

71

TYPES VeI Vg I Vg il vyl v, Vol
(1M, Vﬁ) (0.6M VIQ) (0.2M ,3) (2Mg , VY) (l.lMQ,VY) (O.ZMG,VY)

‘WM, [0.9386  [0.5992 [0.1926 [1.9765 |1.1055 |0.2150

Rkm)  |u. 833 |5.658  |10.091 |o.686 J13.032  jau.1su
ilo-mecs |15.9018 |15.6379 15,2388 |15.30u4 |14.8380 |1u.2143
gM/RCZ 0 285 0.156 0.0282 r0.301 0.125 0.0131
’&%_g) V) 39. 6811 |29.6169 |29.4078 30,1426 30,150 29. 9572
My/Mg  |1.1307 |0.6593 |o.lous [2.3722 |1.197 0. 21686
;FMB/MO 0.1521 10.06012 |0.00227 |0.3957 |0.09198 |0.00189
' a 0.170  |0.0915 |0.0117 |o.167 0.0767 |0.0087
Eé;;m '1“5“0233“% 15.6823 |15.2660 |15.5583 |1n.8654 |1v.2026
| (cal |36 ‘6‘533 -—3';8082: "-34”6533 %36_285;19‘38082 |33.2853
,'.‘_’9( ) .130.0127 129.6995 29,2898 - T =
A_(_?’- ) |~ #50% |~ +20% | ~-30% (~ *+20%) |(v -20% ) (/\ -507 )
,944(‘\) 0.430 0.688 0.944 0,308 [0.750  |o.o7m |
-grlr ®) 12,32 L.45 1.06 2.52 1.33 1.03

MM 1 [~ osss | ~a | ~1 oo
Re/R ) ~1 |~ 0.755 ~1 ~1 0. 607

9, (R)(egs) |5, 3151014 | 2. 8101 |2, 5241013 |2, 7051014 3. 6x1013] .. 281012
oR)(cg9) |1.23x105| 3. 60101 2. 67x1013 |7. 05x201% | 1. 15x101) 5. o102




TABLE 20, The radial distribution of mass and the ratio of mass to radius 272
for the model VyI.
Model VyI (2 MQ, VY)
r (km) u(r)/Mg MY Me  [ulr)/M u(r)/r 2u(r)/r
1.061 0.9199x102 0.5897x10"> 0.00465 |1.28x1072 |2.56x1072
2,020 |0.6076x10"Y  |o.u115x107F  |0.0338  |0.0uu2 0.0884
3.010 |0.1859 0.1460 0.0041 |0.0911 0.1822
4.006 |0.3974 0.3315 0.201 0.146 0.292
5.011  |0.6890 0.6211 0.3u8 0.202 0,404
6.0090 |1.029 1.009 0.520 0.252 0,504
7.008  |1.381 1.470 0.700 0.292 0.584
8.002 |1.698 1.938 0.859 0.313 0.626
9.001  {1.921 2,229 0,974 0.313 0.626
9.686 {1,977 2.372 1.000 0.301 0.602
TABLE 21, Radial distribution of mass for models VBIII and VY il
Model Vg 111 (0.2 Mg, V3 ) Model V., 1l (0.2 Mg, V)

r(km) u(t)/ Mg u(r)/M r u(r)/Mg u{r)/M
2.07 0.0298 0. 154 T 0.02083 0.0965
3.00 0.0733 0.380 6.01 0.0601 0.280
44,00 0.1292 0.670 8.01 0.1157 0.537
6.00 0.1845 0.959 10.00 0.1686 0.785
% 7.60 |0.1919 0.996 12.01 0.2017 0.936
9.00 0.1921 0.999 % 13.74 0.2129 0.990
10.091 | 0.1926 1.000 24,15 0.2150 1.000
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that the general relativistic corrections are significant even on the surface if the
neutron star is massive enough (the last two rows in Table 19). g(R) is more than
twice as large as % (R) for models V[3 I and VY I, though the}g.- go! is less
than [0% of the Newtonian value % for the lightest stable models, VB il and

VY I, This information is quite useful when we come to the discussion of the
atmospheres of neutron stars, The curvature of space and the red shifts are relatively
small for our lightest models but are quite large for the heaviest ones. All these
results point out the importance of general relativity in the problem of neutron stars.
We notc that larger values of mass and radius are associated with Vy type models
than Vg type models, and lower central densities prevail in the former than in the
latter.

To examine the internal structure of these stars in more detcil, the radial
distribution of density inside the star is shown in Figure 41, Models of type VY are
represented by dashed curves and those of type Vg by solid curves. Different
models in the same group are specified by their masses. An interesting thing is that
the effect of the electron~ion envelope is negligible for the heaviest and medium
weight models of both groups, but it is significant for the lightest models, especiclly
for the model (0.2M@, VY) due tfo the small ceniral density associated with this model.
All these models have been selected from the stable regions. That the proper mass
is larger than the gravitational mass (so that the stellar configuration is stable against
dispersion to infinity) has been checked. The general assumption that the electron-
nuclear envelopes are negligible for stable neuiron stars has been found to be invalid.

This is shown in whot follows. The radius of the neutron core is about 75% and 60% of
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the total stellar radius for models VB 1l and VY I, respectively (the third row
from the bottom in Table 19). Also, the results of the last two sections indicate that
the radii of the stable models of minimum mass of the types Vp and VY are about 8.5
km and 14 km, respectively, when the outer electron-ion envelopes are neglected,
os compared with 10 km and 24 km when these envelopes are included. By neglecting
the envelopes, therefore, we wiil introduce the error as large as 15% to#0% in the
value of the radius of some of the lightest neutron stars.

To see the effect of the envelope on stellar masses, the internal distribution
of masses is shown for the two lightest models VB 1 and VY HI in Table 21 and for
the heaviest model VY I inTable 20. The boundary between the envelope layers
and the neutron core is marked by an asterisk for models VB I and VY {1l for which
such envclopes are appreciable. 99.6% of the mass is contained in the core of
modal VD 11, while about 99.49% is in that of model VY Itl. That is, in spite of the
large extended envelope, the mass contained in the envelope is only about 0,5%.
The effect of the envelope on mass is negligible even for the lightest stable neutron
stars,

As we shall see in the ncxt chapter, one of the decisive factors in determining
the surface condition of a star is the gravitational acceleration g on the surface
which is proportional to the raiio M/R. That is, by neglecting the heavy-nuclei
envelopes we are introducing errors from about 25 to 60% in our surface parameters,
especially on the values of red-shift. As a consequence, for instance, if the results
of the last section (for a pure neutron configuration) were used, quite a different

result for the possible behavior of cooling times, etc., of light neutron stars would

be expected.
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V/e have noted that the radial component of the metric becomes infinite,
and that we face the Schwarzschild singularity if the factor 2u (r)/r becomes equal
to or greater than 1. To check that our final models do not lead to this difficulty,
the factor 2u (r)/r is calculated af different radial distances r from the center.
Such values for the heaviest stable model VYI are listed in the last column of
Table 20. The maximum of about 0.63 is seen to occur at about 10% of the radial
distance inward from the surface. For all of the other five lighter models, the values
are less. Our last six stable models therefore do not exhibit the Schwarzschild
singularity,

It may be noted that the proper mass is smaller than the gravitational mass
from the center up to a certain distance from the center. In this region the total
binding encrgy becomes negative but the larger positive binding energy in the outer

half of layers is thought to keep the body stable as a whole,

V-4 DISCUSSION

In this section, some of the key poinis of the results will be summarized and
explored further,

a. Chandrasekhar Mass Limit

We have noted that in the simple white dwarf mode!s of Chandrasekhar, the
solution of the equations of hydrostatic equilibrium gives a finite mass (called
"Chandrasekhar's maximum mass") as the central density goes to infinity, and that
there is no solution for more massive degencrate stars, This is casily explained by

some simple reasoning (as given in Appendix ). That is, inside a white dwarf star,
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the gravity is supported by the pressure supplied by non-relativistic degenerate
electrons, This pressure depends on the mass and radius through the density (A3-3),
while the gravitational force also depends on mass and radius (A3-2)., The dependence
of these quantitieson M and R is such that when the gravitational force and the
pressure force are equated to each other to fullfil the hydrostatic equilibrium con=
dition, a relation is gotten between the total mass and radius of a star under hydro=
static equilibrium (A3-~7), That is, a star of @ given mass can take on only a fixed
value of R as determined by this relation. This argument no longer applies when
the density becomes so high that the electrons become relativistic, In this case the
pressure dependence on density (and hence on M and R) is such that when the
condition of hydrostatic equilibrium is applied, the radius term is eliminated (Eqg.
(A3-8)) and there exists no fixed radius for a given mass, The Chandrasekhar mass
limit occurs when the degeneratc electrons become relativistic. Therefore, a
degenerate star more massive than this limit has no woy of adjusting itself to become
a stable star unless some caiastrophic events such as nova and supernova explosicns
can eject its excess mass into space so that it can finally end up as a stable white
dwarf with a mass smaller than the Chandrasekhar limit, or else that the increase in
the internal temperature due to contraction can succeed in causing encugh of the
star to become noin~degenerate.

It has been shown that instead of developing a singularity at Chandrasekhar's
critical mass, the solution of the hydrostatic equations with a more realistic equation
of state gives a turning point af a finite mass, radius and central density of about

e
L.2Mpy, 2 x 103 km and 107 gm/cm”, respectively {due to the inverse beta
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processes), and that the solutions with higher central densities lie along the curves

shown in Figure 37 above the first turning point.

b. Problem of Stability

The problem of stability has been discussed frequentily in the last sections.
We shall now look into this point in more detail, A siar, as a stable mechonical
system, must first of all satisfy the hydrostatic equilibrium condition. Therefore, if
the hydrostatic equations (1-1) and (1-2) or (1-8) and (1=9) fail to give sclutions,
it means such configurations do not exist as stuble bedies, An example is a degen~
erate star exceeding the maximum mass of the Chandresekhar or Oppenheimer-
Volkoff type. Consider a star lying on the lower poriion of the curve in Figure 37
before the first furning point. Such a star corresponds to a body in which gravity

is supported by the degeneracy pressure of non=relativisiic electrons under the

1/3

condition R =const M _ s

(A3~7). If because of some perturbation a star of a
given mass M happens to hove a larger R than that given by (A3-7) it will
contract fo the right size, while if it happens to be too small in size it will expand
until the condition (A3-7) is fullfilled. In this way the star can adjust itself 1o the
stability point against external disiurbances, If this condition is satisfied, the star
is said to be dynamicaily stable as well as being in a condition of hydrostatic

stability. A real, stable star must satisfy both conditions of stability, namely, the

hydrostatic and the dynamic ones.

The stars lying along the branch between the first turning point (Chandrasekhar's

0 X
crushing point ai around Pc ~ 107 gm/cm3) and the next turning point (near
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gc ~ 1014 gm/cma), and which belong to the intermediate region between the white
dwarf and neutron star models, are unstable in the following sense: They do satisfy
the hydrostatic stability condition(being solutions of hydrostatic equations), but they
are not stable against dynamical disturbances. Let us suppose that such a star exists,
Should a slight disturbance be given to if, it would contract a little. In this region,
the higher density resulting from contraction does not raise the pressure sufficiently
(because some electrons to which pressure is due will be lost because of the in=
creased rate of electron capture at the higher density). The gravity, however,
increases with the increase in density. The pressure thus fails to support the increas~
ing gravity wiih an increasing density and the contraction continues, becoming more
and more rapid once it is initiated by the slightest disfurbance until the star becomes
so condensed that it reaches the stable branch for neutron stars, In the same way, if
the slightest disturbance produce a small expansion, the pressure does not decrease
sufficiently to not over~balance the gravity which, of course, also decreases because
of the expansion. This is because, with a decrease in density, and hence a decrease
in electron Fermi energy, more free clectrons will be liberated., Once begun,
therefore, the expansion continues at a higher and higher rate so that it soon reaches
the stable branch of white dwarfs,

A similar argument may be applicd to the upper and lower branches in the
neutron star regions (10]4 < PC < 10"/ gm/cm) in Figure 37, In this case, however,
it is not electrons, but neutrons and other baryons which may be crushed out of
existence. A more rigorous approach to the dynomical stability of stars in the

category of gencral relativity has been recently given by Chandrasekhar(65) and
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it has been applied to the problem of high density behavior and dynamical

stability of neutron stars by Misner and Zapolsky.(24’6]) The result is the same as

that estimated by Oppenheimer and Volkoff, namely, that between the two branches
around the Oppenheimer-Volkoff crushing point, the stars lying along the lower

branch (in Figure 30) are completely stable while those lying along the upper branch
are dynamically unstable. Even if a star along the upper branch is created by some
magic, the slightest perturbation will cause a transition to the lower branch (expansion),

or if it starts to contract, it will contract indefinitely.

c. Cppenheimer-Volkoff Mass Limit

All the models constructed and the approximate analysis applied so far point
out that this second crushing, or the existence of the second maximum mass, is also
inescapable, as is that of the first Chandrasekhar maximum mass, No stable stars
with mass exceeding this limit exist. For models with non~-interacting particles, this
maximum mass has been shown to be about 0.7 Mg while it is increased to as much
as 2 solar masses in some of the models of real gases (e.g. VY)' We do not know what
is going to happen on superdensc stars whose mass exceeds this limit. We have to

rely on a non=static approach in dealing with such problems,

d, Fatc of Stars Exceeding the Maximum Mass Limit

The fate of massive degeneraie stars exceeding Chandrasekhar's 1imit has
been discussed and investigated to a great exient in the past, and these investigations
have produced the basis of most of the theories of formation of white dwarfs by loss

of mass. The fate of neutron stars with mass exceeding the Oppenheimer=Volkoff mass
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limit has been speculated upon ever since the existence of this limit was first con-
firmed by Oppenheimer and Volkoff. The first theory is due to Oppenheimer and

Snyder(é)

who investigated the problem with the simplified assumption of the equation
of state P=0. Recently, in particular, the dynamics of a collapse of such a body has
been a hot issue among people in relativistic physics and astrophysics. Various contri~
butions toward a solution of the problem of the fate of massive stars have been given
by authors such as Wheeler, Cameron, Chiu, Fuller, Fow!ler, Hoyle, etc. (e.g.
refercnces 8, 9, 17, 29, 32, 33, 60 and 66). This interesting fopic however goes
beyond the domain of this research, and | shall only mention that (1) if one looks at
the problem as a matter of principle, it poses serious paradoxes such as the non=
conservation of the baryon numbers, while (2) if the problem is taken as a matter of
phenomenon, various possible means of ejecting excessive mass can and have been
speculated upon (as has been done for stars with mass exceeding the white dwarf
limit), which would enable a star to finally become a neutron star within the mass
limit,

e. Existence of the Third Maximum Alass

In most of previous work, the methods commoniy adopted were to carry out

ol”7 gm/cm3, and then join this smoothly to one

the integration up to about pmc ~ 1
asymptotic model of a central singularity. Therefore, the exact behavior of superdense
stars with p_¢ > 1017 y/ 3 t deiermined. | i t integrations f

5 fm gm/cm” was not determined. In carrying out integrations for
ideal gas models in these superdense regions, this writer was firsi disturbed by the

fact that the expected singularity (a straight vertical line in the {~M plane) was not

seen when the integration was carried out up to a limit as high as ¢¢ ~ 1017 gm/cm®.
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To settle this question, the original domain of the equation of state (from tnc =0 to 8)
was enlarged (to tnc =16), and the integrations were repeated with central densities
as highas €€~ 1024 gm/cm3. Then finally, the smooth approach to the singularity
(the vertical line in the £°-M plane) was observed (Figure 30) as expected. The
result is that before approaching the singularity, there is another small maximum at a

ol9+4 3

gm/cm® above the Oppenheimer-Volkoff critical point,

central density ~ 1
This third maximum belongs to the region which was found to be dynamically
unstable in previous investigations, However, it is reporfed(24) that the stability
problem at the third maximum cannot be analyzed by the simple methods employed
earlier and Wheeler suggesfef:lﬂ;;)at this peak might be checked by extending the

variational method fo terms of the second order. The result of such a check may tell

whether the third peak has any physical significance.

f. Central Singularity

rrom Figure 36, we have a glimpse of how the central singularity may be
developed for a star of finite mass and radius. The tendency seen in the curve (1)
in Figure 36 becomes more and more pronounced as the central density increases.
Above a certain value (just after passing the third hump), the mass and radius of a
star seems fo stay almost constant with increasing central density; the enly change
being that of the internal distribution of matter, The N baryons which have been
spreading over the whole interior of the star seem to assemble more and more at the
center, and this readjustment of internal distribution of matter seems to keep the
apparent size of the star fairly constant, until at the extreme (?‘: =) all N baryons

gather at the center, leaving nothing elsewhere in the star.
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The existence of a central singularity has been predicted by various people
with various analytic approximations all of which point to the inescapable existence
of this singularity. The major diffcrence between different models is in the values
of the radius and mass.

An interesting common property of models with Pc =0 is that the time
metric at the center vanishes. Equation (1-33) in Chapter | gives an expressicn for
the time metric inside a star (r < R); 944(r) = (1= .?_RM_) {cos h2 214—({-)-} _],
where M and R are the total gravitational mass and radius of the stellar configu-
ration and t,(r) is the relativistic parameter of neutrons at a radial distance r.
Especially at the center t.(0) =a for such stars and the cosh term becomes infinite,
giving the value zero o 944(0) for any combination of M and R. The vanishing

of the time metric implies that for a distant observer the phenomena occuring at the

cenier of such a star proceed at an infinitely slow rate.

g. Schwarzschild Singularity

In Chapter |, Section 4d, another type of singularity was introduced which
is inherent in spherically symmetric bodies of the Schwarzschild type, namely, those
where the line clement is expressed in a form as given by (1-26) and (1-30). This
singularity develops on the surface of radius Rg =2 GN\/C2 called the
gravitational radius. The time meiric vanishes and the radial component of the
metric becomes infinite on this surface. Therefore, it fakes infinite time to cross
this surface and due to the infinite curvature of space there, the light emitted from
this surface will never reach us, Even though it was pointed out in Chapter | ihat

the Schwarzschild singularity seems to be a coordinate singularity (in the sense that
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it is removed by coordinate transformations into, for instance, isotropic forms such
as (1-48)); nevertheless, in the above sense, it may be regarded as a physical
singularity. For instance, if a neutron star of a given mass has a radius equal to

the gravitational radius R = 2GM/C2, we are then in serious trouble because this
star might never be seen even if it were located closer to us than the moon.

This point was checked with our models. The conclusion is that all the
models constructed in this research have radii larger than Rgr the limit set by the
Schwarzschild singularity, from the lightest models to the densest (where EF =),
and if they do exist, the emitted light will travel into outer space. However, it is
not known whether somewhere in the intcrior of some of the superdense stars, the

——-——-—-—ZGé‘Az(r) is violated or not. In the extreme case of a central

condition r >
singularity, this condition will be violated in the interior. However, as was checked
in Section IV-3f, the Schwarzschild singularity does not occur both in the interior

and on the surface of all of the six models selected for further investigation as stable
neutron stars (the results for the denscst one of them, VY I, are listed in Table 20),

After also examining results from my other models | conclude that this applies to all

the other models as well, if the central density is not too high.

h. Binding Energies

Two kinds of binding energies (in mass units) have becn introduced, One, Mg,
represents the total binding energy of a star with respect to the mass before the con-

stituent particles have been assembled in the form of a star; the other, M., is the

B

macroscopic mass defect, or the pinding encrgy due to the presence of only a gravi-

tational field. The results presented reveal that Mg can be cither negative or
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positive, while M'B is always positive. This can be explained as follows: By
definition, R R

=M. = My = » + M= EJVUT= URD
Mg Mp M where Mp ‘_J;em\(-?/m () e AV J; (4~13)
and R

M'g=M_ - M where M, :jf }}(}M(/z) AL (4-14)
A A7

where € is the total energy density which includes the rest mass energy and all
internal energies due to microscopic phenomena (kinetic energy, and potential
energy due to interaction forces between constituent particles, etc, ), while ®m
is specifically the sum of rest masses of the constituent particles, We can, therefore,
decompose € into a rest mass part SJm and an internal energy density (Sim)
Then, My  can be re-expressed as

K R
R (e DA VS £)dv=
My = CEn [Tty = £ )4V =5, $u(G 0 = 1)V ihe £
;i - | (4-15)

H

_:"Rf“ s N K .
M8 S Il-g 0 - AT AT 25‘.% FICAN

N

where fi(e in) + o

[N

Noting that ./ -gn,(r) = (_%T)) > 1, the first term in (4~15) is always
r-2u(

positive, while (&in) consists, in our case, of the kinetic term (which is positive)

and the nuclear potential term which is also positive if a repulsive potential

dominates, From earlier discussions we know that the total internal energy density

/a . . © e, a . . l b ] h

(&~ in) is also positive because the attractive potential never becomes larger than

the kinetic term in magnitude. Therefore, the above expression (4~15) shows that

Mg can be either positive or negaiive depending on whether the first term or the

second term is larger in magnitude, u{r) appearing in the metric is a funciion of &,

and, therefore, each term depends on the exact expression of the internal energy
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(especially on the interaction potential used) in a complicated way. This explains
why the binding energy My became negative in high density limit for an ideal gas
and for pure neutron gases of type V}g ; but failed to become negative in all the
other potentials used in this research. It is interesting to note that the corresponding
quantity became negative for high density in Saakyan’s real gas model.,

When kinetic energy exceeds the rest mass, it appears that binding energy
becomes negative; this is true in a flat space because here \/Tg-n, =1 and the first
term in (4-15) vanishes. That the curvature increases with an increasing gravitational
field which itsclf increases with increasing density and microscopic kinetic energy,
makes the situation more complicated.

The above simple reasoning that the binding energy should become negative
(end hence that MP should be less than M) for the relativistic particles (i.e. KE>>
mc2) applies, however, in the case of electrons. When the electrons become relati-
vistic, the effect of curvature duc to gravity is still negligible(where g~ 103 gm/cn‘?‘}
and when the electron kinetic encrgy becomes much larger than its rest mass energy,
the binding energy does become negative: this is exhibited in Figures 37 and 40 (the

12 14 gm/cma). The

dashed curves are to the left side of solid curves for 10" “ < fc <10
effect is small, however, due to the small masses and energies associated with electrons
as compared with those of baryons.

Equction (4-14) may be re-written as

. ¢
— . 2 ( JL "~ n
M'B =j E(J"%ﬂ{ﬂ) e! )OE \/‘:Vg.”/z gL(\/l-'Q M(/Z) 1] VUZ (4-16)

Noting that /v/(r = 2u({r)) > 1, this quantity is always pesitive in the presence of a
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gravitational field, as was noted in our previous results. The large values associated
with the macroscopic mass defect also point out the importance of the non-Euclidean

nature of space (gravity) on the problems of neutron stars and other superdense objects.

i. Effect of the Upper Limit Set by Relativity

The effect of the requirement that the pressure cannot become larger than a
certain function of the energy density is summarized below. The general behavior of
models of dense stars (the existence of the first, second and third mass maximums end
finally the arrival af a constant mass and radius as the central density becomes
infinite in the manner illustrated by the general shape of the trajectory of the
solutions of the hydrostatic equations in the ¢ mc-lv\ plane, such as are shown in
Figure 37) does not change, irregardless of whether the relativistic limit has been
applied or not and what kind of restriction has been applied (whether it is the type
Pg ¢ or PL -‘ZL ¢ etc.). The main effect of such a restriction seems to be the
change in the actual value of the critical mass (Figures 32 and 40). For instance,
the Skyrme=Cameron type models have a larger critical mass at € € =co after the
limitation P& € has been observed than before (Figure 32), \hile Figure 40

reveals that for Levinger-Simmons type models the more restrictive limitation Pg

Wi

causes masses to be smaller than in the casc of the less restrictive limitation P T.
After examining all the models constructed in this research end their behavior, it is
concluded that the general effect of "cuiting off" is to discourage any further change
in mass with any further increase of central density. For instance, if the pressure
saturation is applied in the lower branch of Oppenheimer-Volkoff hump (that is, if

the nuclear equation of state becomes equal to the asymptotic cquation when the
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mass is increasing with increasing central density), then the application of the
requirement P K & (where K is a constant) prevents any further change of mass
in the same direction (in this case, the mass does not increase with increasing
central density as fast as it would in the case of no restriction, and, therefore, we
get smaller masses above the pressure saturation point (refer to the curves for
PL €/3 in Figure 40, for instance). While, if the pressure saturation occurs on the
upper branch after the Oppenheimer-Volkoff crushing point has been passed, then
on this branch the equilibrium mass decreases with increasing central density, and
hence the application of the limit PL K& discourages any further decrease of mass
with increasing central density: as a consequence larger masses obtain beyond the
crushing point for models with P< K & than for the original unrestricted ones (for
instance, compare curves (1) and (2) in Figure 32),
It should be emphasized that an exact knowledge of the equation of state

14 16

near and just above nuclear densities (around 10"~ < p<10 gm/cm3) is required to
determine the properties of the stars not only in this range but also of far denser ones.
It is true that denser matter, about Pz 10]6 gm/cm3, should follow an asymptotic
equation of state such as P=& or P= £/3 (or most generally the polytropic form

= cn? =(y~-1)E, with v appropriately chosen), but the important question is:

to what nuclear equation should this be joined in lower density regions?

jo Red Shift

We may feel that the denser stars have larger red shifts, However, on examin-
ing the behavior of red shifis with central density from the list in Tables 10, 15, 16,

and 17, we see that the red shift is largest for models just above the Cppenheimer-
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Volkoff crushing point, and that with a further increase in central density, red
shift first decreases and then stays constant as £ —~ o, This is because the red
shift is determined by the ratio of the total mass of the star to its radius, and mass
and radius stay nearly constant as the central density approaches infinity in super-
dense regions. It is quite lorge around the maximum moss point, even as large as
about 0.3 for real gas models, This is consistent with the prediction of Burbidge(67)

that red shift of such a star can become as large as about 0.5 (= AMN).

V-3 CONCLUSIONS

(1) By investigating the properties of models based on two contrasting
possible forms cf interaction potentials (type Vg and type VY) both consistent
with experimental data in the medium cnergy regions near and just cbove nuclear
densities, we are led to the conclusion: that models of these iwo types possess
quite different properties, especially their critical mass values and redii, In steble
ragicns, the radii of the Vy type models are almost twice those of type VB and

the critical mass of models of type V., ore a'so about twice as large as the corre=

y
sponding mass value of type s models, [t is most desirable to further improve

the nuclear equation of state in the critical region of 101'4gm/cm3£ P < 10165
gm/cm3. Through knowing the naiure of the interaction forces between baryons, we
will be able to construct better neutron star models; or by the reverse process, if in the
future we happen to obtain “he mass and the radius of neuiron stars through obser-

vations, we may ke able to solve the problem of the interactions between nuclzens

and strange particles,



290

(?) The above investigation shows that other effects, like that of the
relativistic limit, the effect of hyperons, etc. are relatively small, compared with
the effect of the exact form of the interaction potentials. However, we realize
that the present research has been beased on a very artificial assumption, namely,
that all hyperons are under the same interaction potential of cither type VB or
Va~r and this may not be well justified. If a better expression for the interaction
forces between strange particles is adopted, the hypercn effect may turn out to be
quite important,

(3) Another outcome which may well be noted is the possible importance
of the eleciron=heavy nuciei envelope in some of the lightest neutron sters. The
most extended envelepes occur in unstakle regions, but it was shown that some of
the stable neutron stars could have quite an extended envelope also, clmost as
large os the neutron core iiself, although the mass coniained in it would be smail,

(4) By calculating the curveture of space, it was demonstrated that general
relativity is important in the problem of neuiron siars,

(5) It was shown that all the models in hydrostetic equilibrium have radii

2:"./"\6

farger than R = 5 (otherwisz /- grr(R) would have to be infinite or
C

imoginary), and it may be concluded, therefore, that oll stable neuiron star mode!s

do not face the frcublesome Schwarzschild singularity,

V-6 SUNMMARY

To summariza the resuls, some of the interesting physical quantities for

different models ore listed in Tables 22, 23, 24.
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TABLE 22, Properties at critical points (the stellar radius R, the gravitational
and proper masses M and Mp in units of solar mass, the central matter and energy
densities Pm® and €€, and the red shift) for a real gas model of neutrons with

Vg, Vy and \/p ¥ for composite models of a real gas of type Vg and Vyr the
Skyrme=-Cameron type models, and ideal gas models, are listed at: (1) the second

maximum, (2) the third maximum, and (3) the centrel singularity with £¢ =co,
(Summary of my results.)

B v i Skyrme -
S = dg Composite (P<E) | Pure Neutron (P €) Cameron- lcCJ;eal
x = : as
G e vn VY Vf} ; VY V_B./ Type
R (km) 4.7 9.7 5 10 8 7.5 9.5 |
J]
WM, 0.96 | 1.98 | 0,98 1.94 1.65 | 1.70 0.72 |
5 "
§ Mr/Mo 1.17 | 2.40 1.12 2.29 1.92 | 2.10 075
1 e f I
. C P |
Ag_ log p.. | 15-95 | 15.4 | 15.95 15.3 | 15.5 | 15.5 : 15.4
T legg © || 16 | 156 | 16.2 15.45 | 15.7 | 15.8 | 15.6 -
g ! : ‘r :
. H {
f | Red 0.301 | 0.300 | 0.288 0.285 | 0.303! 0.334 0.11
& shift "
R (km) 3.86 | 8.05 | 3.04 7.9 6.26 | 6.6 6.4 |
—- i — ——e :
WM 0.78 | 1.54 0.77 1.55 1.26 | 1.351 0.44 |
| — ST T
: MM, ous4 1.4 | 0.76 1.63 1.31 | 1.455 | 0.42 |
: i T T
£ 1 logp € | 17.3 | 16.7 17.34 16.6 | 16.86, 16.85  18.8 ‘
2 m | I ul
b i ' i , :
g log€ © 18.5 | 18.8 | 19.55 18,5 . 18.86| 19.1 | 19.4
" ael
. & | Red 0.29 | 0.27 | 0.287 0.288 | 0.296| 0.302 0.10
| e shift !
1
P
R (km) 3.86 | 8.05 3.93 7.9 1 6.59 | 6.6l 6.4
AR | - |
: = MM, 0.77 | 1.53 0.765 | 1.54 | 1.26 | 1.34 0.425
o~ 8 |
L35 MP/M 0.83 | 1.62 0.757 1.62 | 1.294| 1.44 0.398
L E.S ° !
i S
S Redh 0.202 | 0.274 | 0.286 | 0.287 : 0.280 | 0,298 | 0.098
; shift | i i
e | | |
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"TABLE 23. The physical properties (1) near the Chandrasekhar crushing point and (2)
in the region of the clectron=icn exiended envelopes, are listed for various composite
models of low density for the purpase of comparison.

(1) Ist Max, (Chandrasekhar) |i (2} Max. Envelopes |
| log P mc I\/'\/M‘3 R(km) log e mc M/M0 R (km) |
Vgl 9.1 1.18 | 2.3x109 13.25 | 0.26 1.6x109 |
Le-Sl
| Vplt 9.1 1.18 | 2.3x10° || 13.55 | 0.4 2.6x103
Salpeter ) .3 3
(equil”) 9»3 1002 29”*’4‘)(10 lu‘o SLI' Oc ll 602)(10
Wheeler || 8.4 1.2 3.5x10° 13.17 | 0.24 4x10°
Chandra. || 1o 4l 0 _— — _
Rudkid. o 1.2 0 — — —

TABLE 24. The models of others are compared with mine at (1) the Oppenheimer-
Volkoff crushing points and (2} the point of central singularity.

1

Cr?ﬁ;ﬂ} (i) OPR- VOL. MA. POINT (?) CENTRAL SINGULARITY
Models&m Pmc(gm/cm3) M/My R{km) «"/M@ R (km)
| |oP.- vOL. £S~ 100 0.7 10 | o4 3.1
5 VWheeler ES~ 10'6 0.6C 10 1,48 (analytic)

' § |Sackyan €°~234x10° | 044 no0 0824 | o1
= |(1deal) | - 2 .

7 {gakyan Lge~10 1,06 6 il 0.9 4.95
l rea | ,

- |ldeal 2.5 x 1015 0.7 2.5 | 0.42%5 6.4
IsC, 321013 70 75 LR 8.7

5 [S-CuUPg ) 3.2 1015 170 75 | 1.3 6.61
g civp| 9x10% 658 | 5 | 0.765 3.93

8 =My 3.2x 1015 1.65 3 1.26 6.59
2 WAZW [ 2x 107 154 | 10 .54 7.9
£ N e 9x1005 096 | 47 0.77 3.36

3 L 5My] 25« 1015 1.98 '9.7 1.53 8.05

2 Q | gMp| 8x10l5 091 5 072 4

] Y Sy [ 2x 015 1935 | 10 1.47 8.1
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In Table 22, the stellar radius R, the gravitational and proper masses M and
Mp » the central matter and energy densities emc and &€, and the red shift, for
models constructed in this research (the Levinger~Simmons type real gas models of
a pure neutron configuration (Vp, VY and V‘3 y ) and of composite configurations
(\/[3 and Vy), the Skyrme-Cameron type real gas models, and ideal gas models), are
listed at: (1) the second maximum point (the Oppenheimer-Voikoff crushing point),
(2) the third maximum point, and (3} the point where the central singularity developes.
From this table it con be seen that the red shift in ideal gas models is about 1/3
that in real gas models, the difference in red shifts between different real gas models
keing quite smail. The red shift is only about 1% or less for light neutron star models,
is about 0.1 to 0.3 near the Oppenheimer-Volkoff crushing point, becomes somewhat
less at the third maximum point and stays constant thereafier as the central density
becomes infinite. In Table 23, the physical properties near (1) the Chandrasekhar
crushing point and (2) in the region where the electron-ion envelopes become most
extended, are listed for varicus compasite models of low density: the first two rows
give properties of composite models of the Levinger~$immons type VB and V')r- .
Listed fogether with these for the purpose of comearison are the corresponding proper=
ties of Saipeter (equilibrium medels) and the Wheeler, Chondrasekhar, and
Rudkidbing's models. In Table 24, the models of crthers and those constructed in this
research are compered, at (1) the Uppenheimer=Volkoff crushing point and (2) at
another imporfant critical peint where the centrol singularity developes, By examin~
ing this table, we may obtain a quick view of the effect of the interactions between

particles, of the presence of hyperons and other baryons, and of the relativistic upper
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limit P & or PE /3. It should be noted that Saakyan's ideal gas models are
for baryon gases while the ideal gas models of Oppenheimer-Volkoff and those of
the present research are for pure neutron gases, while Wheeler's models are for a
relativistic proion-neutron-electron system. The critical mass at which central
singularity occurs as obtained by Viheeler has no connection with the rest of his
ideal gas models, because it was obtained through an independent analytical method.
His maximum mass cf about 1,48 M@ therefore represents an approximation for real
gases and agrees roughly with the other real gas models presented in this table. In
Tables 23 and 24, L.~S, means models of the Levinger-Simmons type and S.~ C. indi-
cates models of the Skyrme~Cameron type obtained in this reseasch. The models of
other authors are indicated by the fuli or abbrevicted nomes of the respective authors,
For instonce, Chandra, means the models constructed by Chandrasekhar, efc.

Other symools in Tables 23 and 24 are the some as those introduced in Toble 22,



CHAPTER V
HOT NEUTRCN STAR MODELS

V=1 INTRCDUCTION

In the last chapter the hydrostatic structure of degenrate stars was
analyzed. Some importani questions, such as those pertaining to the internal temper-
ature, luminosity, cooling, and detectability of these dense stars, were, however,
completely left out. This chapter is devoted to these problems to complete our
investigation,

It was noted in Chcpter | that the integrations through the degenerate
core from the center do not contain temperature and that all the temperature-
dependent properties are determined through the integrations over the thin non-
degenerate outer layers from the surface. The structure equations in these outer

layers are, from Chapter |,

an _ (/e ST GUTC P [+ Ma)

& R(R-2L M/ C?) G-
- 5-2

iIL. - 3 K ) e(ﬂ> L (radiative or
dr H4QC T/Ls AT 72*  electron conduction) or (5-3)

d
d?;' =(1- _}l‘: )«;r‘P—"—-“,L 'a{'_){ (convective) (5-4)

where M_, T.. P, 4 (r), and K (r) are the mass, temperature, pressure, density
and opacity at a distance r from the center, L is the total luminosity of the star,

and other notation is the same as in Chapter I. The general relativistic expressions
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are used in hydrostatic equations because the result of the last chapter (Table 19,
last two rows) reveals that the general relativity effects are not negligible near
the surface.

To solve these differential equations, the density and opacity must be
eliminated through the exolicit relations

P = P (P0) Tp) (5-5)

Ke) =K (p)T) (5-6)
for a given composition. In the core integrations of Chapter IV, we saw that the
most troublesome task is making a correct choice of equation of state (5-5). In the
non-degenerate cuter layers the equation of state is relatively simple (Section V~4a),
but here it is the opacity, (5=6}, which poses the most complicated problem. The
next section (V=2) is, therefore, devoted to the subject of opacity.

Also, we must have a suitable boundary condition at the surface. The simple
condition (1-6b) is no longer adequate when we are concerned with the outermost
layers. More accurate boundary conditions for surface integrations are obtained in
Section V=3 through the construciion of simple model atmospheres. The actual inte~
grations of the structure equations over the surface layers are carried out in Section
V-4, Some temperature~-dependent properties of neutron stars, such as central and
surface temperature, and the distribution of pressure, density, and temperature near
the surface, are investigated in this same section. The total energy contents of
neutron stars are then found in Section V=5, Luminosity, both optical and neutrino,
is calculated in Section V=6, and cooling curves are obtained in Section V-7,

The observational problems are investigated in Section V-8. The conclusion is

given in Section V=9,
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The temperature~independent properties of hot neutron stars are the same
as those of the cold models obtained in the last chapter, as long as the internal
11 e e .
temperature does not exceed about 5x 10" °K, This criterion applies to any

hot neutron stars of appreciable duration as will be seen in Section V-7,

V-2 GPACITY

a. General Remarks

The opacity is the most decisive factor in the envelopes of neutron stars.
Both radiative and conductive encrgy transpoit are expressed by (5-3) together
K(r). Let us call the radiative opacity

with a suitable expression for / Kp, and the conductive opacity K, then the total

opacity K is given by

=1 + 1 (5-7)
K KR K

Radiative opacity is due to the various processes of atomic and molecular absorption,
emission and scattering of radiation in vhich electrons play the major roie. The
relative importance of these processes depends strongly on the temperature-density
combination. For instance, in matter of high temperature and of relatively low
density, electron scattering is dominant, while in the region of intermediate density
and temperature the various photoelectric effects such as the bound~free and free-
free processes are the most important, In degenerate matter of high density electron
conduction is in general the most efficient mechanism. The major processes of atomic
absorption are (1) bound-free process where bound elecirons are ionized through the
absorption of photons, (2) free=free process in which free electrons are excited to

higher states through the absorption of photons, and (3) bound~bound process where
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bound electrons are excited to higher bound states through the absorption of photons,
Excited electrons emit photons in the inverse processes. The scattering processes
are (1) Thomson scattering if the temperature is not too high and (2) compton
scattering for T> 5 x 108 oK,

In general, the radiative absorption coefficient depends on the frequency of
radiation v . There are various ways of obtaining the mean coefficient of absorption,

The most commonly sed of these is the following, called the Rosteland mean,

N J’Q(»)rdaw'rmTjam
h Kp J (da(h)/orrjd))

2O ={ U Ot %P( e )} 59

is the mean free path of a phoion of frequcncy Vi pgW) and p s(V) are the usual

(5-8)

coefficients of absorption and scaitering, given by

U=, & (V) s K (V)= 6 (5-10
where n; is the number of atoms per unit volume in state i; & (V) is the cross
section for absorption of radiation of frequency v by these atoms; ng is the number
of electrons per unit volume; and i{ s is the compton scattering cross section which
becomes K o  the Thomson scatiering cross section, in the low temperature limit.
The factor ( 1 -exp(~ ];2% )J in (5=9) is to account for stimulated emission, h
and k are Planck's and Boltzmann's constants, respectively, and f is matter density.

B, T) = (2 hv¥/c D) [exp (+12)- 13 - (5-11)

is the Planck disiribction function corresponding to a temperature T.

Conductive opacity is obtuined through the thermal conductivity A, which

is defined by
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v L o_q (5-12)

< dr

where dT/dr is the temperature gradient in the direction r and Q is the flux

of energy, Noting that the temperature gradient is expressible also as

aT . _ 3k F L
U™ A4AaT3C A4Tr* (5-13)

and that L/4‘T]'r2 is the energy flux, we see that these two equations are identical if

ft:?af’%\r ’ (5-14)
<

That is, the solution of the problem of conductive opacity boils down to the deter-

K =
mination of A, the thermal conductivity,

If pg(v), P, (V) and A_ are known, therefore, the above equations enable
us to find the total opacity K , in principle. The opacity obtained in this way
usually has quite a complicated dependence;gensify and temperature and is expressed

as

k =k (@, T) (5-15)
In recent years, various extensive tables based on detailed computations have been
published which give the absorption coefficient for many different compositions and
for a large number of points in the temperature-density diagram. The most accurate
method of obtaining opacities at present is thought to be through the computer pro=
gramming code for stellar absorption cocfficients and opacitics censtructed by A. N.
Cox and his colleagues of the Los Alamos Scientific Laboratory, which includes most
of the possible major processes contributing fo opacity.

b, Cox's Opacity Code

The code was construcied so that it could be run for a mixture of as many as

11 elements. It includes bound=bound, bound-free, and frec~free absorption, electron
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scattering (both Thomson and compton scattering), negative ion absorption and
electron conduction, and can be run for 50 discrete values of density and 50 discrete
values of temperature. The bound-free absorption depends on the equilibrium number
of electrons which are bound in the various atomic states. \‘hen the ionization of
one element is completed, no more bound-free absorption due to that element can
occur. For high densities the effect of degeneracy is taken into account in all but
the electron scattering term. At low densities and low temperatures not al! electrons
are ionized. An ionizaiion code should be used in conjunction with the opacity
code in these regions to calculate the degree of ionization, the partial pressure of
electrons, and the number of free electrons and bound electrons in the opacity cal-
culations.,

At temperatures above about 5 x 107 °K, almost cll clements (even the
heaviest elements) are fonized. The existing tables mentioned in the previous sub-
section are also used to obtain absorption cross sections di(v) for the various kinds
of processes: bound-free, free=free, negative ion, etc.). The electron scattering
term is obtained for the non-degencrate case in which pair production of electrons
and positrons is neglected, and it is, therefore, independent of density but dependent
on temperature in the high temperature region where compton sccttering is dominant.
Different approximations are applied for different degrees of degeneracy to evaluate

the conductive opacity K. «

c. Opaczity Calculations

Cox's opacity code was run by Mr. B, Sackaroff, a member of the computer

staff at the Goddard Institute for Space Studies, on an [BM 7094 computer for (1) a
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pure iron composition and (2) a pure magnesium composition*, in the range of
temperature from 107 °K to ]010 °K, and of density from 10743 gm/ cm3 to

1014 56 o M924 composition, Cox's code did not work

gm/cm3. For a pure Fe
for temperatures below 1037 °K and densities below IO-4°3 gm/cms. Cpacities
at densities higher than 1014 gm/cm3 have not been included in this calculation
because degeneracy sets in at densities far below this. Calculation of the same
quantities at temperatures higher than 10'0 ©K has not been carried out because
the assumption of electron scatiering in non-degeneracy and no electron-positron
pair creation causes serious errors there, The opaciiies (In #) thus obtained have
been stored as an input deck of cards in the form of a two~dimensional table corre~
sponding to a given In T and In ¢ combinations for later usc.

The ionization code was run in conjunction with the opacity code of Cox
in the low density and temperature regions vhere the icnization code works (roughly,

the region where photoelectric effects predominate) to obtain the correct degree

of ionization at a given combination of temperature and density.

d. Resulis

Results obtaired in this manner are plotted in Figure 42, The solid curves
represent the opacity of iron 56 as a function of density at different temperatures,
while the dashed curves represent the same for magnesivm 24. The opacity shows
quite a complicated dependence on density and temperature in the region

e ,<\,10° gm/c:m3 and T< 108 9K, where the transition from electron scattering
v

*The reason for these particular choices is explained in Section V-4d.
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or electron conduction to Kramer's opacity (mainly various kinds of photoelectric
effects) occurs. In Figure 42, the almost straight horizontal lines in the region
of T> 10° °K and f< 10% °K are due to compton scattering, while the almost
straight lines of negative slope in regions of higher density are an indication that
electron conducticn is the dominant factor in the transport of energy there. We
can assume that degenerccy starts as soon as the opacity curve in Figure 42 starts
to follow one of these straight negatively sloping lines.

In order to understand the meaning of these opacity curves more clearly and
to check the results obtained through Cox's opacity code, it was thought to be
helpful to investigate some of the asymptotic forms of the complicated opacity

formulae presented in Section V-2a,

e. Kramer's Formula for Bound=Free Transitions

Ve noted that in intermediate temperature and density regions, bound-free,
free=free and bound~bound processes arc in gencral the most important. Besides
thesc, some negative ion absorption, especially in the case of H™, is quite important
in low temperature regions. However, in the particular case of a composition of pure
iron or pure magnesium and also in the outermost layers of neutron stars, only the
bound-~free process is thought to be important. This is mainly because cf the extra=
ordinary composition and the exiraordinary high temperatures which are associaied

. 6 7 about several thousand degrees of
with the surface of neutron stars (about 10 OK as compared wafh/mosf typical
stars such as the sun), Due to the absence of hydrogen and helium we do not have

a source of negative ions, In the presence of heavy elemenis, the bound-free process

5x
is possible even under temperatures up fo abouf/l o’ °K. In the presence of the
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bound-free processes, the contribution from the free-free and bound-bound ones is
vsually negligible, as will be seen shortly.

Various molecular processes become important at lower temperatures, but the
surface temperatures of neutron stars of interest are too high to let these molecular
processes enter into our consideration.

The conclusion is, that to analyze the behavior of opacity in the low temper~
ature low density limit associated with neutron stars (that is, the upper-left corner
in Figure 42), we need consider only the ordinary bound-free transitions in the non=-
degenerate casc.

The absorption coefficient per atom and per electron for bound~free transitions
is given by

ape = 64 T e (Z *5*5,1 /(3/3 RV ) (5-16)
where Z1 is the effective chorge of the ion, n is the principle quantum number of
the electron, and g is a non-dimensional factor called the Gaunt factor, which is
of order of 1 and varies slowly with n and 37 . The over-all absorption coefficient

for bound-free transitions is then,

- Xa P
/’(bf()))*%%a bf( AAH )NA)’YL 517

2 s the concentration of the atom in question, H is the mass of hydrogen,

(P @/AH) is the total number of atoms of atomic weight A per unit volume and
Na, n is the number of electrons per atom bound in the nth state. On substituting
(5-16) and (5~-17) in (5-3) and (5-9) in the absence of the scattering term and of

hydrogen and helium, the following approximation, called Kramer's formula, results

K ogler T = - 434x10% -:fl ) Q1735 (5-18)
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g is the mean Gaunt factor, and t, called guillotine factor, takes care of all the
required modifications and corrections, t/g is in general on the order of 1 to 10,
After applying a similar argument, Kramer's formula for free-free transitions

in the absence of hydrogen and helium takes the form,

K€1) =363 x10%2 5 p 17 33 (5-19)
From these two equations, it is clear that for the composition of interest, free~free
opacity is about 1073 times that of the bound-free process, which proves the original
assumption that the former is negligible compared with the latter. (5-18) applies in
the low density-temperature region where degeneracy is not important (the outermost
layers of neutron stars), or, referring to Figure 42, in the upper~left hand corner.

In the presence of degencracy (in the region of transition from Kramer's

opacity to conductive opacity), each term in (5-17) for the bound-free absorption
coefficient must be multiplied by the probability that the final state of the ionized

electron is empty, namely,
]
1+exp (((E-p)/kT)

[

where E is the energy of the final free state of the electron and p is the chemical
potential of the electron. The result is that in the presence of degeneracy, the bound-
free opacity is somewhat lower than that obtained by (5-18}, Equation (5-18) is,

however, still valid if the degeneracy correction is included in the factor t.

f. Electron Scattering

The electron scattering term in (5-9), Mg ())) , is evaluated as follows,

Starting from the equation of radiative transfer with electron scattering, which holds
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for local thermodynamic equilibrium, and retaining only the first term in the ex-
pansion of F _(v), the flux of radiant encrgy of frequency v across a surface

with normal n, Sompson(és) found that,

Hp)= _UN(P)MP’JF {1 P/XPC—W//OT)J( ), 100) wj(s .

9?‘?( ‘m)/‘f‘?T VXO))

Here, (P) is the number densﬂy of electrons with momentum P ; V, ), and L2
without the subscript 2 are, respectively, the frequency, mean free path and solid

angle before scattering and those with the subscript 2 are the corresponding quanti-
dd
a2

Nishina formula for a system in which the electrons are initially ot rest, denoted by

ties after scattering. The differential cross section is given by the Klein=-

primes, as

{ - g D |
9.(1-!- WG) )]{14_ 7]

O'ﬂ_’ 7, 2 [H‘r"! ol P (1+ca<fé)’)(1+7'(1-w"3'l7(5-21)

where Y' =h V'/mc and =e2/mc . On substituting (6-21) into (5-20) and

applying the transformation from the primed to the unprimed system, we obtain

U y=Meby O\ TI= g 6,6 C U -r’)where 522

Cr(UT )'-:"‘"‘ 5%'(?( E:)(EH)(E +9~E) QO‘D<"“"”>0‘\ (5-23a)

CeT! ) j(E-H\(E +2~E> 99‘?2(' = )dE (5-23b)
i
Y2 -//g_ LE"‘ LE 1t 315 —_—3 /OB?yT/?
()T TG T = laF | Yo )

where ¥, E and T' are the photon energy, the eleciron kinetic energy and the
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temperature in units of me%, g (¥, E) is a complicated function of ¥ and E

as given in reference 68, u=hy/kT, and

2
8,= 87; 25 - 3?'"( = C7_> = constant (5-24)

is the Thomson cross section for scattering of radiation by electrons. If all electrons

are ionized (which is the case when clectron scattering is dominant as for T > 107°K)
in the absence of electron~positron pair creation, the electron number density is
. e Zi . . -th
simply ng = 2 - N, X;,where X; isthe conzentration of the i
l .

i
atom and N, is the Avogadro’s number. \vhen only the element of mass number A

and atomic number Z is present (as in the present case),

n = —e—'—f‘— N, (for nucleus (A, Z)) (5-25)

e
In the absence of absorption and cmission processes, if we substitute /U W) of

(6-22) into (5~9) and use (5-8), we get for the radiaiive opacity due to electron

scattering,

,’{ tne d Cl (T>:( ) (f er (T) (for nucleus (A,Z)) (5-26)
where G (T) is a function of temperature only, which can be calculated from
6(T)={ Su‘*e (e 1)[@({/7]%{} (5-27a)

Values of G (T) calculated in this manner are listed in a table in reference 68, which

is reproduced below:

kTkev) | 2 4 6 9 141 2 A ! 50| 80 125
C{T)__[0.95005[0.5044 | 0.85250.0067| 0.72791 0.6525 | 0.5590{0.4408]0,3411]0.2579

...... (5-27b)
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In the limited range of 20 kev < kT < 125 kev, we have

G(r) = - 0.13887 + 49371 (1) 25947901y " -2.36261) Y2 (5-27¢)

The conversion from kT in Kev to temperature in units of 10° %K is

T7~ kT (kev)/35.2 (5~-28)
For an element where A/Z =2, (5~28)reduces to

K = 0.2Ir) cm?/gm (5-26")
the constant term is, in fact, opacity due to Thomson scattering, and the exira
temperature dependent term é(T) can be considered as a correction to the pure
Thomson scattering in the region of compton scattering. The above results show
that the compton scattering effect is negligible at T < 107 ®K, but with increase
of temperature, the opacity decreases, [t shows also that opacity due to electron
scattering isindependentof density in the absence of degeneracy and of electron=
positron pair creation, while it depends on temperature *hrough the term é(T).
Pair creation of electrons and positrons is always negligible in the problem of neutron
stars, because the density is too high for this process even at the high temperatures
which obtain here. The degeneracy effect may, however, become important,
especially in the transition region between radiative and conductive energy transport.
In the presence of degeneracy, the integrand in (5~20) should be multiplicd by the
probability that the final electron state vill be empty, as in V=2e, This results in

opacity in the presence of degeneracy being lower than the non-degenerate value.

g. Electron Conduction

The thermal conductivity of elecirons has been derived by the use of the

eleciron theory of metalsCH) as,
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2
:Q/megcgmecz G:Gs - G‘l} (5-29q)

C3IRefT T @,

where

I= _g_{_ Zl_/;é_’f & Qe,}sqﬁé LogZ + & logK - 3 L} (5-295)

Gar Gy Gg K and L are infegrals of the form

(Tt empormeciootkt-p)] £ ct)dt 5 B=(hT)

where f(t) is some function of t. For the non-relativistic case, these equations

514 :
reduce to é-"'%i %IZ/—S )EF‘I'-#FBZ}/(‘; F )

i, Bz (TWAL A ePT (5-30a
"1t CUNT
and
2
T- ﬁ : X,’ z( (_lg..log 1297 + -'_ log Z; 'Fﬁ log F.?/Z
H v A -~:‘f(g logFly)  (5-30-b)

For the non-degenerate, non-relativistic case, it simplifies to
_ RETHN ‘43efT )
7\0-— lig’}‘)’le T /A ( ! (5-30c¢)

and for the degenerate, non-relativistic case

2, 4nbp2 >( ¢
= 2;-\' njthC ;’:Q ;r | Bwith =P/ mg ¢ (5-30d)
e .

The conductive opaciiy in the corresponding asymptotic regions is calculated by

substituting A above into (5-14),

h, Discussion of the Results

First, let us consider the region where all but the Kramer's opacity are
negligible. When T = 10 ©K, this condition is fulfilied as long as

10-4 gm/cm3§ ¢ < 102 gm/cm3. Noting that #/g in the absence of degeneracy
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is ohout 1 to 10 Kramer's opacity for bound=free transitions calculated from (5-18)

is about 10 cmz/gm at p =10-3 gm/cm3 and about 10° cm2/gm at p =1 gm/cm3.
These values agree almost perfectly with the curve of T = 10% ©K shown in Figure 42,
For T =109 °K and p= 103 gm/cm3, the quantity EF/kT ~ 1 and degeneracy is no
longer negligible, although still small. At this particular point, the results calculated
through Cox's opacity code are

” ) " }?,(R Kc .
H,=10% em’/om and K, =101 cnl/om %) = 5

Conductive opacity is already the more important, However, the Kramer's opacity
calculated from (5-18) still agrees with the radiative opacity /{R from Cox's code

if g/t is taken to be about 1/300, It has been noted that the cffect of degeneracy
is to lower the opacity and that this effect can be included in the guillotine factor

t. Therefore, it seems quite in order that §/t has been decrcased from 1/10 to 1/300
in the presence of degeneracy. Next, let us consider T = 10° °K. Kramer's cpacity
becomes ~ 102* cmz/gm at p = 10-3 gm/c:m:3 if g/t is taken to be about 1/50;
while X 5 ~ 1043 cm?'/gm at p =1 gm/cm3 if g/t is taken to be 1/500. Both
values agree well with the radiative opacity from Cox’s code. When T = 10° °K, EF'
the electron Fermi energy, and kT become comparcble with each other when

C~1 gm/cm3, and the increase of t in this case is again as should be expected,
When T =10% °K, Ec/kT is already comparable to unity at about g~ 1073 gm/cm3
and the non-degenerate}{bf from (5~13) at this density is much larger than the value
from Cox's code if the ordinary value of g/t =1~ 10 isused. The conclusion is
that the general behavior of Cox's opacity for iron composition and magnesium

compositicn is reliabie in the region where Kramer’s law of opacity applies, if
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degeneracy is correctly taken into account. It should be noted that the simple approxi-
mation (5-18) is good only for checking the order-of-magnitude.
Next, let us turn to electron scattering., For T = 106 OK, electron scattering

4

is negligible unless the density becomes less than about 10™ gm/cm3, which is out-

side the region of our major interest. At T = 107 ©

K, the opacity due to electron
scattering dominates over Kramer's opacity for p < 107} gm/cm3. At T =107 °K,

kT is about 1 kev and Thomson scattering applies. Here, /{5."‘ 0.2 cm2/gm, which
agrees well with the T =107 °K curve for 3 1072 gm/cm3 in Figure 42, At T= 10°
°K, kT is about 8.5 kev, G(T) is about 0,3 from (5-27b), and the scattering opacity
J(s~ 0.16 cmz/gm from equation (5-26'), agreeing perfectly with the curve of

T =108 °K in Figure 42 for p < 103 gm/cm3. in the small range around g~ 10°
gm/cms, Kramer's opacity contributes appreciably, but for higher densities, electron

9

conduction takes dominance over the rest. At T=10" °K, Kramer's opacity never

enjers, In this region of high temperature, most of the electrons are ionized and
bound-bound andboung'?ree transitions can give hardly any contribution, the effect
of free~free transitions is aiso too smeli to be important, At T = 107 °K, kTis
about 85 kev, G-(T) is about 0,34, and (5-26°) gives /{S ~0,07~1071 cmz/gm =
constant, which agrees we!ll with the result shown in Figure 42, At this temperature,
degencracy starts at about 106 gm/cms, and radiative opacity is replaced by con-
ductive opacity at higher densities, When T = 1010 °K, kT is about 0.85 Mev and
Ep/kT becomes comparable with 1 when g~ 167 gm/cmso At lower densities the

main mechanism for radiative transport of energy is compton scattering with

Ks ~ 10725 cm2/gm, while at higher densities eleciron conduction is the most

efficient process (see Figure 42).,
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The degeneracy effect on electron scattering is negligible for T 108 °K,
because Er/kT is less than cbout O‘OS(that is, degeneracy is negligiblafor e< 10°
gm/t:m3 at T=108 OK, At this same temperature but at higher densities, Kramer's
opacity dominates over electron scattering before real degencracy sets in and makes
conduction the most efficient mechanism. At temperatures below T = 108 ok
Kramer's opacity predominates over electron scattering at densities even lower than
above. For higher temperatures, a non-degenerate treatment of electron scattering
may not be well justified in the transition region. At T = 107 °K, however, Ep/kT
is already around Q.1, at e ~ 10° gm/cm3, and we expect that the only effect of
including degeneracy at this temperature will be to lower slightly the corner of the
curve for T=10° °K in Figure 42 in the approximate density range 105 to 107
gm/ cm3. This decrease in scattering opacity with increasing density due to degener-
acy is expected to stari at about L’),?,]Oé gm/cm3 for temperatures > 10 bill*on
degrees.

if electron=positron pair production is included in these extremely high
temperature regions (108§T <10’ °K), the opacity would increase with decreasing
density if (8 <1 gm/cm3, but the actual solutions of the structure equations of the
envelopes of neutron stars in later sections reveal that this combination of temper-
ature and density is not encountered in the problem of neutron stars,

Finally, let us check the conductive opacity. Because the term in the
bracket in (5~30b) is on the order of unity, and A/Z ~ 2 and x; ~ 1 for the compo-
sition of our interest (pure Fa or pure Mg), the conductive opacity for the non-

relativistic, extremely degenerate case becomes, from (5-14}, (5-30b) and (5-30d),
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K, =5.57x10"17 12 ";‘2)(56) (5-31)

with x = pc/mc, Let us consider that e =100 gm/cms. fonized electron gases

of heavy nuclei are still non-relativistic at this matter density, with a corresponding
Fermi energy of about Eg ~ 0.2 Mev and with x ~ 0.4, Then, (5-31) gives us the
following values at p= 100 gm/cm3; conductive opacity is/{'ie= 1.22 x 10'9,
1.22 x 10-7, and 1,22 x 1072 cm?/gm for pure iron, and is /{:A9=5,,65 x 10']0,
5.65 x 10-8, and 5.65 x 1078 cmz/gm for pure Mg, at T = 104 oK, 10° °K, and
106 <>K, respectively. These values agree perfectly with the results of the Los
Alamos opacities shown in Figure 42, as they should.

Next, consider o =107 gm/ cm3 with Ep ~ 5 Mev and x ~ 10, and note
that the electrens are relativistic here. At this density, equation (5-31) gives

13

Fe - - ,
/(C =5.6 x 10 ]5, 56x10 "%, and 5.6 x 10 1 cmz/gm for Fe, and

N - =12 -
Kc o 2.6 x 10 ]5, 2,6 x 10 ]“, and 2.6 x 10711 cmz/gm for Mg, at T = ]04°K,

105 °K, and 10° °K, respectively. These values deviate from the results shown in
Figure 42 to a small extent, but this degrce of deviation is just what is to be expected
because the non-relativistic approximation was used in the derivation of (5-31) and

this does not apply well at this density. However, the condition of extreme degeneracy
is satisfied at all the points selected to be checked. In most of the electron con-
duction regions shown in Figure 42 clectrons are degenerate. However, at the lowest
density for which conduction is still dominant at T = 1010 °K, the highest temperature
considered (that is, at the corner of the T =10'0 K curve near p ~ 107 gm/cm3

in Figure 42), EF/kT is only about 5 and the assumption of extreme degeneracy is

not well justified. The smali hump at this corner (in the transition region between
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the compton scattering and electron conduction at T= 10"~ ~K) occurs because of
deviation from perfect degeneracy as expressed by the approximate relation of (5-31),
Using the relation x= PF/mc Sa) n]/3 oC P]/3 , equation (5-31) can be re=-
writien as

log/( ¥ (const x T3 = 2log P (if e < mg ¢, (5-31)
which indicates that conductive opacity of degenerate matter should give roughly
straight lines of negative slope when plotted in the log Kc - log @ plane, and the
intercepts should be larger for higher temperatures. This agrees with Figure 42, The
conductive opacity of Mg is lower than that of Fe due to the appearance of Z in
(5-31). It also dependson Z/A= [ -1 but this dependence is too small to be seen
in a graph such as Figure 42, It is reasonable that opacity of iron in the region of
photoelectric effects should be somewhat larger than that of magnesium, because in
general more bound electrons arc available at a given temperaiure and density for
the heavier than for the lighter elements, and therefore more bound-free transitions
will occur in the former.,

Compton scatiering depends on composiiion only through the ration Z/A, as
seen in (5-26), which effect is also too small to be seen in Figure 42,

After examining the various asympiotic values, we can conclude that the
opacity table prepared through the Los Alamos code for pure Fe and pure Mg in
Section V=2c is sufficienily accurate for our nevtron star problem.

In the above discussion, the temperature-density diagram for opacity on p.72
of reference 26 was used qualitatively to determine which particular kind of opacity

should be dominant in ecch of the temperature~density regions of interest.



V-3 ATMOSPHERIC CALCULATIONS

\Ve have noted that the simple boundary condition (1-6b) does not lead to a
proper representation of the surface layers, Somewhat better boundary values at the
surface are obtained as follows,

Let us define the suirface as the point where the actual temperature is equal
to the effective temperature, that is, T, =T, where the effective temperature T is
defined as the temperaiure of the black body which would radiate the same flux F
as the star itself. That is, F = zJTe4, where O) is Stefan's constant (5.670 x 10-5
ergs/cm2 - sec-deg.4). By definition, the total optical luminosity L of the star is
related to the total flux per cm? per sec, F, as L=4T R2F, where R is the radius
of the star, Therefore, we have

L= 47 6 g2 T4 (5-32)

In the atmospheric layers above the surface of neutron stars as defined above,
it is assumed that the ordinary theory of stellar atmospheres applies, provided that
general relativity effects are correcily taken into account in some of the denser
models, According to the theory of radiative transfer in stellar atmospheres, the
first approximation (due to Eddingtonj to the temperature distribution in grey atmos-
pheres in radiative equilibrium is,

=140+ % T) (5-33)
where TS is the temperature at T=0 and ‘T is the optical depth defined as
dT =- K { (r)dr where K is the opacity. (5-34)

If K, is independent of Vv the theory of radiative transfer leads us to the relation
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Te =2]/ 4 Tor and from (5-33) we find that the optical depth at the surface where
T,=Tg is T =2/3. The thickness and mass content of an atmosphere is negligible
in general, and, therefore, equation (1-1) when applied to regions within atmospheres,
takes the simple form, = g_
AT T KChT) (5-35q)

where g =GM/R = constant, In the above derivation, (534} was used to eliminate

r. The general relativistic equation (5-1) leads us to the same atmospheric equation

(5-35q) if g is re~defined as

-1
=9, < ot ”)(H—MT h) r= ﬂ> (5-35b)

Mc? Rc*
and 9o = GM/ Re
To determine the pressure Pph’ density P oh? temperature T, and opacity
Al {)ph’ Te) at the surface as defined above, the general procedure followed by
Ezer and Cameron in reference 69 was adopted here. That is, we assume that the
opacity J{ is independent of both height and wave length in the atmosphere but that
it has the value determined at the photosphere, J( Pk Te): then we find from

(5~35a) that

Fh ,‘t’s 9
NG Ph) (B, )
d ¢ AT =

o 5P % /{(P}\Te> /’ﬁ( A,T)B

For a given stellar radius, mass and luminosity, we first gless a value of P oh?

(5-36)

then find T, . from (5-32), and finally we.calculate P, through (5-34). The
c Y ph

equation of state at the photosphere is simply

P=GFrD% o
"R HY

-5 5-37)
hT+30ﬂ I‘L, A=1 569x10 (
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The first term is the gas pressure of non~-degenerate fully fonized electrons
and heavy nuclei of pure (A,Z) composition, and the last term is the radiation
pressure. The notation used in cquation (5-37) is the same as that introduced in
Section IllI=1. Radiation pressure is negligible in dense interiors and even at the
surface in most cases. For instance at a temperature of one million degrees,
radiation pressure Py is 2.5 x 107 dynes/cmz, which is negligible when compared
with the gos pressure Pg (=5 x 1012 dynes/ cm2) at the photosphere of a typical
neutron star at this same temperature. However, when the temperature goes up to
about 10 million degrees then Py =25 x 103 dynes/cm:2 while according to
Table 25 Pg~ 2 x 1014 clynes/cm2 at the photosphere. At even higher temper-
atures, radiation pressure becomes larger than 10% of the gas pressure near the
photosphere of neutron stars, On substituting Pph as calculated through (5-36)
into (5-37), we obtain a new value for ioph' We then repeat the procedure using
this new value as the starting point. This process is continucd until we get the
desired degree of agreement befween subsequent values of o phe

The above cclculaiions are performed with (1) a pure Fe 96 composition, and
(2) a pure M924 composition, because of the reasen given in Section V-4d, The
photospheric properties of a neutron star depend on the specific model (that is, the
specific combination of M and R) and on the period in its lifetime (that is, the
surface temperature).

The result of the present calculation shows that as a neutron star cools from

4o

Te =5 x 107 °K to Te =2x 107 7K, (1) optical luminosity is reduced from about 106

times to 1078 times the solar luminosity, (2) the 4 oh decreases slightly from about
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TABLE 25, Photospheric properties of typical neutron stars (Vo
L is the luminosity, Pph Poh and K

ph

maximum wavelength without red shift,

CN

are the photospheric mm:ﬂJ: pressure and opacity, respectively, and X° . is wrm

0.6M,) and (Vy , 2M,) at different surface temperatures ._. .

Te <.? M=0.60 iy, R =5.66km |V, M = 1977 M, R=9.686knm X,
K) _o,i L a%%aa\gwg _oa%a\ni._ mmﬂw log :.; _o%g%_: f&m%v _o%vas& (A)
i , ”

2x10% | -8.0153 | -1.8193 | 1.214x1010 | 4,955 -7.5484 ¢ -1.6708 ' 1.731x1010 | 4,433 1459
5x10% ' -6.424 [ -1.8616 T2.757x1019 | 5.9394  i-5.9566 | -1.7177 i 3.840x10'0 4,0832 583.6
10° | -5.22 -1.8134 . 6.166x1010 | 35003 -4.7525 | -1.6490  9.009x1010 ' 37129 | 291.8
2x10° | -4,015 | -1,5985 2021101 | 20743 -3.5434 | -1.4499 . 2.846x1011 | 32133 | 1459
5x105 | -2.424 | -1.07%9 T1.693x1012 | 21513 -1.9567  -0.3650 | 2.741x1012 | 22293 | 58.3
100 | -1.220 -0,9310 47041002 | 17074 | -0.7526 | -0.7275 _ 7.519x10'2 1.7915 2.18
2%10° 10,0154 | -0,9447 91021012 | 1.4207 | 0.4516 -0.7523  1.418x1013 ' 1.5160 14.59
5x106 | 1.576 | -0.8647 - 2.735x10'° | 0.9430 | 20433 | -0.6900 " 4.085x1013 . 1.0564 5,836
107 | 2780 | -0.4403 | 1.452<0% 1 02130 | 3.2474 | -0.2596 | 2.201x104 ' 03250 2918
2x107 | 3.985 | -0,3963 T 3.21200 ¢ | -0.1269 | 44515 | -0,2012 | 5.051x10'4 - -0,0358 1.459!
5107 | 5576 | -0.2744 1.065x101° | 06474 | 60433 | 00578 | 1.757x1015 | -0.5772 0.584.




319
3 3 15 10
1 gm/cm® to about 0,01 gm/cm®, (3) Pph decreases from about 2 x 10°~ to 10
4.5
dynes/cmz, and (4) its opacity at the surface changes from about 0.1 to 10° cmz/gm.
In general, at the some surface temperature, higher values of Pph’ (Dph and Kph
seem fo be associated with heavier models.
The surface boundary values of two typical models of stable neutron stars
(vgr 0.6Mp) and (v),, 2M@) with pure iron atmospheres are shown in Table 25.
For our lightest model ("(3' 0.2 Mg ) at the lowest temperature considered at present,
- - 3
Te=2x 104 °K, we have L= 10 7.5 LO'(Oph =3,16 x 10 2gm/cm and
Pph =2.54 x 10 dynes/cmz, which indicafes that for T, > 104 °K we need not
3

be concerned about opacity at densitics lower than 107 gm/cm3. Surface temper~
atures lower than 10 thousond degrees are not included because the opacity code
does not work in these regions . (\!n the above, Lg =3.780 x ]033 ergs/sec is the
sun's luminosity.)

In evaluating the opacity K({) To)s the Ink=Inp ~In T table prepared in

ph?

Section V-2c and the interpolafion subroutine are used to obtain the desired valua

of In K1 corresponding to a given In Pph_ln T, combination,

ph

V-4 ENVELOPES OF NEUTRON STARS

a. Surface Integration

In the surface layers where the pressure gradient is quite high, it is most
convenient to express everything in logarithms and in terms of In P, Then, the

siructure equations introduced in Section V-1 become:
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where a=7.569 x 10 5,G=6.67 X 10-8 dyneS*cmz/gmz, ¢ =2.9978 x 101° cm/sec,

The equation of state in non-degcnerate layers is

? - 7
- ol Ui

with By and Miop O defined as (2-44) and obtained from Table 6 in Chapter I, In

ARPT L4 o )
p=1 +Lqa SN A 5-39)
KA 70T t (

degenerate envelopes, all pressures except the degenerate pressure of electrons are
negligible and the equation (4=1) of Chapter IV for degenerate electron gases re~
places (5-39). B in (4-1) is again evaluated from the result of Chapter Il.

A computing program, which consists of a main program working in conjunction
with the integraiion subroutine, the interpolation subroutine, the opacity table
prepared in Section V~2c as an input, and with the subroutine for the equation of
state and that for the atmospheric calculations, has been censtructed for the 7094
computor which carries out the intcgration and all the other computations auto=

matically, For instance, the program is constructed so that the equation of state
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automatically switches over from (5-39) to (4-1) as soon as the point is reached
where these two become equal; the surface boundary values are calculated through
the subroutine for the atmosphere whenever a new set of values of R, M and T are
given; the interval of integration Aln P is automatically adjusted so that the
change of every variable is kept smaller than a preassigned suitable limit; and any
desired value of opacity is calculated for any given set iof density and temperature
through the input opacity table and the interpolation subroutine. The integrations

were terminated when the temperature gradient completely vanished.,

b. Atmospheric Temperatures

To determine the temperaturc distribution in the interior of the atmosphere,
the integration was first carried out from the photosphere down to the point where
¢ = 1014gm/cm3, for a typical model of M=1 M, and =10 km. This was
repeated at several different surface temperatures. The result is shown in Table 26.
The temperatures T at different densities (corresponding to diffcrent radial distances
from the center of the star) are listed in terms of the given effective temperatures
Tee Tpand p are the temperature and density where degeneracy starts (where
the equation of state switches over from the non-degenerate expression (3-39) to
the degenerate expression (4=1)). It shows that degeneracy starts at about

3

Pb =100 gm/cm” when the surface temperature is about 10 million degrees. But
when the surface has cooled down to about one million degrees, degeneracy sets in
already at Pp = 104 gm/cm3. A significant result is that even after the degeneracy

boundary has been passed, the temperature  still goes up considerably as we go

inwards. let us compare the internal temperature at p=106 gm/cm3 and that at
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Atmospheric temperature distribution of neutron star modelgwith M= Mgand R=10 km.

The temperature T at a specified p,the temperature Tb and density py, where

the degeneracy starts are listed as a function of surface temperaturcs Tg.

SURFACE
TEMPERATURG |  INTERMAL TEMPARATURE T (©K) T,CK) o
Te (OK) szl (fgm/ o ;S 4 gm/ crg" élTO] 2Qm/ cém? :lg‘ém/cm:; R-Q;:arch Morton (gm/cms)
1.6 x 167 | 9.00x10% |3.47x10% | 3.65x10° |3.65x10° | 1.4x10° | 2x10° |4.3x0°
1.2 x 107 | 6.86x108 | 2.34x10% | 2.425x10% 2.425x10° | 7.7x10° | 1x10° [1.5%10°
1 x 107 | 5.0208 |1 .525x10° | 1.08x10° |1.88x10° | 5.02x10%| - 1 x 106
0.4 x 10° | 5.75x10% | 1.cexac® | 1.73x109 {1.73x109 | 4.8x108 | sx10°  |s.4x105
6.7 x 10 | 4.51x108 | 1.10x1c® | 1.125x2091.125x10° | 2.0x208 | 2x108 f1.4x10°
5.1 x 10° | 3.70x105 | £.00x10° | 8.21x10° le.21ac8 | 1.5x108 | 1.10x10 6. 2x10%
4.3 x 106 | 3.395x108 | ¢.765x108 | 6.83x108 |€.83x108 | 1.03x10° 108 |2.8x10%
3 x 10° | 2.64x10% | 4.62:10% | 4.64x108 l4.64x108 | 7.6x107 - laxiot
1 x 10° | 9.61x107 {1.12020% |1.125x10%}1.125x10° | 3.5x107 - {104
7.7 x 10° | 6.5x107 | 7.18x10° | 7.35x10% |7.35x10% | 2.3x107 | 2107 |4.2x10°
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p= 107 gm/cm3 with the same temperature of the surface. The fractional rise in
temperature as the density increases from 106 to 107 gm/cm3 is about 10% when
Te =7.7 x 10° °K, but at T = 10 million degrees the temperature at the point
p= 107 gm/c:m3 is about 3 times that at p = 10° gm/cm3, As we go in toward
the center from any point where p = 107 gm/cm3 top= 1012 gm/cm3, the fractional
rise in temperature is about 0,5% for T = 10 °K, while that for Te = 107 °K is
about 3%. Even at the highest temperature considered, Te =1.6 x 107 °K , the
increase is only about 5%. This shows that the temperature gradient is completely
negligible for p > 1012 gm/cm3°

As we go inwards from the surface we find that the temperature gradient is
very high in the outermost thin non-degenerate layers and that the temperature
continues to rise as we go through the degencrate layers inwards, According to the
result shown in Table 26, however, the inner neutron core (with p > 1012 gm/cm3)
is isothermal even for the models of the hottest ncutron stars of appreciable duration.

To determine the core temperaturc of neutron stars (or the central temperature),
let us go back to the graph shown in Figure 41 and some of the discussion of the last
chapter. Typical stable neutron stars have the following internal structure, Except
in some of the lightest models, density and pressure are practically constant from the
center out to the very edge where neutrons (and hyperons if density is sufficiently
high) form the main composition. The abrupt fail of density (and pressure) from their
central value ((JC =10]4~ 1016 gm/cma) down to the photosphcric value (?ph =0.01 ~
1 gm/cm3) and a change in composition from neutrons to electrons and heavy nuclei

is expected at the very edge of the star. Even for some of the lightest stable neutron



324
stars with large degenerate envelopes of electrons and ions, the outermost non-
degererate envelopes are very thin (which is shortly to be shown numerically), while
the mass contained outside the central neutron core where p < 1012 gm/cm3 is still
negligible. The boundary betwecn the degenerate electron~ion envelopes and the

H~12 gm/cmg. Therefore we conclude that the neutron

neuiron cores has p ~ 10
core is isothermal even for the lightest (stable) neutron stars and for the hottest of

thosc of appreciable duration, and that the core temperaiure Tc (which is also the

central temperature of the star) can, according to Table 26 and the above, be defined

12 gm/cm3.

as that femperature where p=10
Nexf to the last column in Table 26 lists Ty, the temperature at the degeneracy
boundary obtained by Morton, Norton's medels have M = 1.3 MO , R=9.25 km, and
p S =146 x 1014 gm/cm3. Also they have non-degenerate outer layers where the
opacity is expressed as )f = 1.4 x 102 P : 7-35 cmz/gm (a modification of Kramer's
formula) if Ty <119 x 108 ok, However, the non-degenerate envelopes consist of
two layers if Ty > 1.19 x 10° °K; in the inner layer electron scattering is the main
source of opacity (K; =0.19 cmz/gm), vhile in the outer layer the modified Kramer's
opacity is dominant. The opacity is set equal io zero as soon as the degeneracy starts,
that is, Morton defined the core tzmperature, or the central tcmperature TS of the
star, as T, the temperature where the degeneracy starts,
For T, < 107 K, the gencral agreecment between Morton's results and mine
is satisfactory. The deviation between our results in the high temperature regions is

thought to be due to the temperature dependence of compton scattering for which |

made allowance in my use of Cox's opacity code but which was neglected by Morton.
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Figure 42 shows that the compton scattering has,af T ~ 107 K, already reduced the
opacity from the simple value 0,19 cm2/gm of Thomson scattering, The density values
at the degeneracy-boundary pp calculated by Morton and myself agree well. The
major error in Morton's procedure is that .he set Ty, to be the core temperature, that is,

he neglected the temperature gradient at p >. pp+ Our results show that temperature

3

increases even after density is increased beyond the point Py Up to ~ 108 gm/cm®,

for some of the hottest models,

The central temperatures are plotted against surface temperature in Figures 43
and 44, The solid curves are for iron and the dashed curves are for Mg, Curves
drawn for three models of the V;r; type in Figure 43 and for three models of the Vy
type in Figure 44 are morked by the appropriafe mass. In Figure 43, Chiu's models
and Morton's models are also shovn. Chiu's mode!s have M =1Mg and R=10 km.
His treatment of opacities and the method for determining the central temperatures
are similar to those used by Morton. Notc that our central temperature is defined
as that af p =1012 gm/cm3, while theirs is defined as that ot p= p b~ 104~ 6
gm/cm3, also there is some non-negligible temperature rise as the density goes up
from py to 10] 2 gm/cmS, Therefore, our central temperature should be higher than
theirs for given surface temperature. This explains why Morton's points for Te< 107 °K
(dotted square) in Figure 43 are much lower than ours. At higher tempzratures
T2 107 ©K), the compton scattering in Cox's code lowers the opacity from the
constant value of ~ 0,2 cmz/gm (Thomson scattering) and this is expected to lower
our values of ceniral temperature, These two causes of discrepancy, however,
compensate for one another and therefore there is good general agreement among the

three for Te Z/ 109 oK.
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It might be argued that the large discrepancy between Morton's and our
results might be reduced considerably if Cox had taken the degeneracy effect on
electron scattering into account, However, this argument is not valid, because the
discrepancy is greatest for T < 108 ®K, while in this same temperature region, Cox's
opacity plot in Figure 42 shows that the clectron scattering becomes important only
in the non-degenerate region (low density region) if it ever becomes important.

Figures 43 and 44 show that the central temperature is somewhat lower for
Mg than for Fe at the same surface temperature. This is due to the fact that somewhat
lower opacities are associated with iig than Fe as is revealed in Figure 42,

We also see that for some of the coolest stars (Te ~ 104 OK), the central
temperature is only about 10 times the surface temperature, while for hot models
(of Te ~ 107°K), the core is about 100 times as hot as the surface. In any case the
difference between the centra! temperature and surface temperature is quite small
as compared with thot of typical stars, where in general T is at least about 1,000
times T,. (For instance, the internal temperature of the sun is about 5 x 10% K and
its surface temperature is 5760 °K, while a typical white dwarf with Te~ 104 ok
is supposed to have an internal temperature of about 10 mi!lion degrees.)

The conclusion according to the present calculation is that neutron stars of
about 3 times solar luminosity are as hot as 10 million degrees at the surface and about
a killion degrees in the inierior, those which are as bright as the sun have a surface

6o
temperature of 1~ 2x 10" 'K and an internal temperature of about 108 °K, and that

by the time they cool down to the point where Te~ 10°~ 7°% ond T~ 107 °K,

they are too faint to be seen (L ~ 1073 Lol
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c. Temperature ond Density Distribution Near the Surface

The internal distribution of temperature can be roughly seen from Table 26.
To examine the region near the surface in more detail, temperature is plotted against
distance from the photosphere as measured inward  in Figure 45. Each curve is
marked by the surface temperature. The model with M =1 Mg and R=10 km is
used here and hereafter in this sub-section to illustrate the general behavior of the
surface propetties.

The crosses marked by X =2.5 represents points where the degeneracy starts.
This criterion for degeneracy is derived from the fact that the kinetic energy of a
non-relativistic fermion (about 3/5 of the Fermi energy Eg) and the thermal energy
of a free particle with no internal degrees of freedom ((3/2<T) should be equal at
the boundary between the non~degencrate and degenerate layers. For the hotrest
model shown (T, =1.6 x 107 ©K;}, the cross is outside the range shown in the figure.
The result of the present calculations shows that even for the hottest models degeneracy
starts before we go inward by 100 meters from the surface, and that the non-degenerate
layers are less than 1% in thickness for even the hottest models. The mass contained
in the non-degenerate envelopes is practically zero, (We saw in the last chapter
that the amount of mass contained even in the inner degenerate electron-ion envelopes
is very small compared to the total steilar mass,) These resulfs more than justify our
previous assumption of constant mass and radius in the atmospheric calculations and
also the neglect of non-degenerate layers in determining the total moss and radius of
neutron stars in the previous chapter. Hot neutron stars with T~ 107 °K have non-

degencrate envelopes of about 10 to 20 meters in thickness, but when the surface
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temperature falls to about a million degrees the thickness of the non~degenerate
layers becomes about a meter or so. A typical neutron star with the sun's mass, a
radius of 10 km and a surface temperature of 6.7 x 10° °k (about 100 times as bright
as the sun) is shown to have non-degenerate envelopes of about 3 to 4 meters in
thickness.,

The density profile near the surface is plotied in Figure 46 for the same model.
The distance from the surface is now shown by a cm=-scaie. This shows that within
about a meter (0.01% of radius) from the photosphere the density rises fo about 10°
gm/c:m3 for cooler stars (when T_ ~ 109 K) and to about 1022 gm/cm3 for hotter
stars (T, =1.6 x 107 °K). In the photosphere, the density rises within a thickness
of 10 cm by a factor of about 100 for cooler models (Te ~ 10° °K) and about 5 to 8
for hotter cnes (T =1~ 2 x 107°K). Such smali scale heights may cause the
diffusion process to become important.

The distribution of density, tempercture and degree of degeneracy EF/kT
within the thin layers about 20 meters from the surface are numerically shown in
Table 27 ot several different interesting values of surface temperatures. On comparing
Table 27 with Tabie 26, we see that the degeneracy criterion used in Table 26
(where the non-degenerate equation of state becomes equal to the degenerate one)

agrees well with that used in Table 27 (Er/kT = 2.5),

d. Diffusion, Convection, and thc Composition of Envelopes

in Chapter 1}, it was concluded that the composition of the surfece layers
changes sharply from layer to layer near the surface. Starting from the boundary

between the neuiron core and the degenerate electron-ion envelopes, the composition
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TABLE 27. (Models with M =1 Mo, R=10 rav._davo_d*c_‘m and mo:m:v\ distribution near the surface at different depths (R-r)
at given surface temperature Te. The point where Ep/kT =2.0

indicates the thickness of the non-degencrate envelopes,

Q
J._. ua ._.muwawx_omox qmuwxdomo_n Te = 6.7 x 10% °K Te = 1.6 x 107 °K
2-r T 7o ~
(meters) Aﬂm\ e ) _Ao%q /T [ log P | logT |EAT  |log £ |logT  |Ep/T logP | logT |ERAT
0 |-1.176 |5.887 | 0.039 | -1.095 | 6.477 | 0.0114 |-0.854 | 6.826 | 0.0074 |-0.605 |7.204 [0.0045
0.1/0.614 | 6.u8 | 0.166 i
0.2{2.317 | 7.002 | 0.63 | 1.55 7.23 | 0.118
0.3[3.275 | 7.261 | 1.53
0.4]3.888 | 7.432 | 2.765 | 2.637 | 7.565 | 0.284
0.5/4.201 | 7.509 | 3.59 l2.28 | 7714 | o0.18 1.576__ | 7.794 | 0.0332
0.6|4.430 | 7.561 | 4.61 | 3.337 | 7.734% | 0.564
0.8 i
1 {4.930 7.661 | 7.66 4.286 7.931 | 1.564 3.42 7.97 0.375 2.558 3.028 {0.0865
2 |5.49 7.3 | 15.7 | 5.315 | 8.210 | 3.935 |u.628 | 8.284 | 1.165 | 3.567 | 8.339 |0.203
3 5.69 8.32 | 5.u3 5.317 | 8.u63 | 2.215 | 4.166 |8.505 |0.3u8
4 5.92 3.40 | 6.38 5,710 | 8.576 | 3.14 4.638 | 8.623 |[0.539
5 |5.89 7.80 | 2u.3 | 6.09 8.45 | 7.u2 5.939 | 8.638 | 3.865 | 5.004 |8.709 |0.770
6 6.106 | 8.680 | u.52 5.312 | 8,783 |1.054
7 6.23 8.50 | 8.32
8 6,27 8.74 T.ou | 5.784 | 8.002 | 1.673
9
10 |[6.463 7.835] 55 6. 54 8.55 | 11.75 | 6.u74 | 8.782 | 6.265 | 6.15 8.996 | 2.3y




334

changes from more neutron-rich nuclei  to less neutron-rich ruclej as we go
outwards, as determined in Chapter il. In the outermost non-degenerate envelopes
with p < 100 gm/crn3, the main composition was found o be of ordinary iron group
elements, This is why iron was chosen in the earlier opacity and atmospheric cal-
culations.

As was mentioned in Chapter Il, a possible change in the above result is
caused by diffusion. We have jusi seen in the last subsection (c) how small the
density scale heights are. Small scale heights and large gravity effects can make
the diffusion process quite important.

Chiu and Soipeter(zz) made the following estimates, regarding the surface
composition of neutron stars: H and Heon the surface go down to the interior and
are burned up rapidly so that, conscquently, these elements should be completely
absent in neutron stars; carbon is probably strongly depleted in a neutron star about
1000 years old; O and Ne are depleted slightly, while Mg or any heavier elements
remain unburned.

No quantitative investigation of the diffusion problem has been made (as far
as | know), but qualitatively it is estimated that under the circumstances mentioned
above, lighter elements such as Mg, O, and Ne, if present, are more probably the
composition of the photosphere than is iron, due to a relatively fast diffusion process.
If it is assumed that the O and Ne are appreciably depleted, then Mg is the most
probable composition of the cimosphere of neuviron stars. This is why not only Fe
but also Mg was seiected in the opacity and atmospheric calculations earlier. At

the present time, the degree of importance of the diffusion cffects is not known, but
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| hope that this effect will be quantitatively accounted for in my models sometime
in the future. At the present stage, it appears that the treatment applied in this
research is adequate enough, because the uncertainties due to other causes may be
more serious than the effect of diffusion on surface composition, as will be shown in
more detail in subsequent sections.

The change of composition due to diffusion, however, does not occur if
convective mass motions in non-degenerate layers cause efficient mixing of elements.
In this case, the original statisiical equiiibrium composition of iron will be maintained.
However, convection appears fo play no important role in neutron stars. This is

estimated as follows. The condition of stability against convection may be written

AT aRT) e L) e
“AMP_/) actual (A»&A P adiabatic ‘2

Ty, an adiabatic exponent, is in gencral 5/3 for non-relativistic simple ideal gases,

as¥®

4/3 for radiation or extremeiy relotivistic gases, and varies between these limits in
most general cases of stable matter. T can locclly become less than 4/3 quite

often, An example is the hydrogen ionization zones in the outer layers of ordinary
stars, Another examplie is a mixiure of radiation and eleciron-positron pairs at ex-

(70)

iremely high temperatures and low densities. In the cuicr envelopes of neuiron
stars, however, due to the high temperaturcs encountered there, the ionization effect

on T, is likely to be negligible and o wili most probably not go appreciably

below 4/3. In this case, the above inequality demands that

(LlnT, < 0.25. (5-41)
Aln P

*For instance, see reference 69 for the inequality relation and reference 70 for the
equality relation of (5-40)
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The quantity (4 fn /040 P)in my final six models of neutron stars has been cal-
culated ot different layers, As we go inwards from the photospheres (AThT/24h P)
was found to vary from about 0.1 to 0.15 at the photosphercs, to about 0,2 to 0,24
just below the photospheres, and then to go to zero smoothly before we reach a
point about 1 km below the surface. In no case was (AfhT/L fn P) found to exceed
0.25. Even if the above inequality breaks down at a particular point in some other
types of models it is not likely that this can occur in a region sufficiently extended

to make convection imporiant.

V=5 ENERGY CONTENT CF A NEUTRCN STAR

If we assume that a neutron star belongs to the end staie of a thermonveledr
evolution, then there can be no energy generation within it. Any stable neutron star
is already so dense that the gravitational energy due to contraction is not available.
Even though the matter is highly degencrate, the only contribution to the iofdl energy
of the star comes from the small tail of the Fermi distribution funciion of the particles
which constitute the star. This is evaluated by retaining the first two terms in the ex-
pansion of the energy density intagral, the second equation of {3-26) in Chapter 111,
for a nearly zero-temperature ideal Fermi gas. The result obtained in reference 7 is
quoted below,

Cv K;Tz'lkl (Il'%' 1

—-—
-

N7 mer x2 (-42)

Cv:<9u-> (5-43)

is the specific heai at constant volume, for a fixed number of particles, U is the total

W

7

~ e

wherc
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internal energy, and x = pF/mc is the relativistic parameter. The total thermal
energy of the star U is then given in principle by carrying out the integration,

T
U= et dT -
The actual procedure adopted in this research is as follows: Noting that CV depends
linearly on T, we calculate the following quantity, the specific heat per particle
per unit temperature, which is independent of tempercature for all fermions present
at a given point in the star:
!
<—£\L>’—"— T (Xh+ l)/z with - Xy = PkF/ (5-45)
NT '{{ mk C* x’z: mp C

where my and ka are the mass and Fermi momenium of the component k. Py

F

is expressible as a funciion of the number density of the kth narticle, n.. At each
point in the star, (CV/NT)k times the number density M of all components present
are added together: This sum then expresses the total specific heat per unit volume
per unit temperature at a particular point in the star. Due fo the spherical symmetry
of the star, the star's total specific heat per unit tempercture is then obtained by

carrying out the in?earaﬁon

Cv f )%;{ T (5-46)

This quantity is mdepencent of temperature, and is a constant for a model of a given
mass and radiuse Valuas of (CV/T) for cach of the six final modeis are listed in
Table 19 in the c.g.s. system on a logarithmic scale.

The total encrgy U is obtained by integraiing Cy over temperature, as in

(5-44). Noting that (CV/T) is independent of temperature, we get
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S8 T

T in the above exp?ession is the internal temperature of the isothermal core, which
has been calculated in Section V-4b for all six models (Figure 43 and 44) for both
pure iron atmospheres and pure Mg atmospheres. The energy content of our six
final models at various different ages (different surface temperatures) has been com-
puted in this manner for Fo and Mg. That for Fe is plotted in Figure 47 in terms
of the surface temperature.

It is seen that as the surface temperature of a star decreases from about

5x107°K 1o 10%°k the energy content of the star decrcases from about 100

ergs to 1040 ergs, although the precise value depends on the type of model in question.
In the above calculations the thermal energy of all components present

(ground and first excited states of nuclcons, the ground states of hyperons, muons

and electrons) are included.
It may be worthwhile fo comment at this point that the above discussion

does not exhaust all possible contributions to the total energy content of the star.

This is because in the abcve derivation of specific heats, E in (3-26) and (3-27) is

the kinetic energy only and the potential energy has been lefi out.
The effect of the potential term is taken into account as follows, Let us

(71)

define the reduced mass, m*, as

“ml"ﬁ it “?‘%_. ( %‘P)>PF (47

where v is the potential energy per particle. Then, rather than using (CV/NT)‘< )

we multiply (C\//TN)*l< as defined below by ny, sum over all k and integrate
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over the total volume in (5-46) to get fhe total energy.

(TN :;L'*kc (Xk+1)> (

where (CV/NT) K is the original unmodified expressuon.

545"
fmjk ) ( )

The second term in (5-47) is evaluated as follows: Because the Levinger-
Simmons potentials introduced in Chapter !l are functions of both the separation
distance r and the momentum p, and (dP/dPg) is 1 at the top of the Fermi sea
we have

o?\/(l’)) (a\u;}'l)d_ﬂ_) +0@\/(fe+)dk7

PE\ dp P 4P e dky O(P

The potential VB introduced in Chapter Il is a square-well po’rential with a finite

(5-48)

range and with a Yukawa tcil outside this range. For the densities we are interested
in (those within a neutron star), the interparticle distance r is less than the range
of the nuclear forces (that is, inside the well), dv/dr in the above equation is 0,

and

(ofVCP)) _ 1 dVCke) dRg forvy) (547
FNAP o B ddy  dB:

This simple expression, however, does not cpply for \/ because \/7, has o

complicated dependence on r, and dv/ dr is not zero even for small r.
L v
TN -

the above correcticn has been applied in the case of Vﬁ only. Values of the

Due to the difficulty in evaluating the term for Vv

Yl

modified expression (CV/T)* on a logarithmic scale for three models of type VB

are listed in Table 19. For the heaviest model, (Vg ! MG)’ the toial energy
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content is increased by a factor of 2: for the lightest model (V.D, 0.2Mg) it is
decreased by a factor of 1.3, and for the medium weight model (VB' 0.6 Mg) it
is increased by a factor of 1.2, This is because the nuciear potential is attractive,
that is, negative, in the major part of the lightest star, and m/m* in (5-45') is con~-
sequently less than 1, as can be seen from (5-47), thus making (CV/T)* and the
modified energy smaller than the original unmodified quantitics. We note that for

0l5:2 gm/cm3, and mean density is less than

this model, the ceniral density is |
10 gm/cm3, and an atiractive, negative poteniial is dominant in this region of
density. Cn the other hand, the medium weight and the heavicst model of type VB

0196 gnd 101947 gm/cm3 respectively,

selected above have the central depsities 1

and in both of these the density is constant throughout the major part of the volume.

Therefore, the repulsive, positive potential term is dominant in this case, (m/m*) > 1,

and the over-all energy content is increased. Even though numerical calculations

have not been carried out for Vy, it is possible to make a qualitative estimate of

the correction due to the potential term. The central densitics of Vy type models

are lower than those of Vg fype models in general. For VY ; log Pc of the lightest

model is 14.2 and that of the heaviest model is 15.4. We expcct that the potential

is negative in most parts of the model (VY r 0.2 Mp), slightly negative for the model

(Vy, 1.1 MQ), while it is expected to be slightly positive and repulsive in the major

part of the model (VY ; 2M ). ACY/T) (= (Cv/T)*=(Cv/T)) for the lightest, inter-
(Cv/T)

mediate and heaviest models of type Vy is estimated to be roughly = 50%, - 20%

and + 20%, respectively.
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The above correction for the interaction potential, however, turns out to be
rather small and unimportant in our final results (Section V-7) as compared with the
corrections required for some other effects, for instance, that for the URCA neutrino

process in the nexi section.

V-6 LUMINOSITY

We expect that a neutron star cools off rapidly, starting right after its formation

at an exiremely high temperature (say, 1010-” °K),

first by neutrino energy dissi-
pation, and then after it has cooled down to about 107 K, through optical radiation

from the still hot surface. The cnergy loss rate due to these two mechanisms is calcu-

lated in this section.

a. Optical Luminosity

The optical luminosity of the star, Lph' is related to its radius and its effective
temperature through the simple equation (5-32). We sce, therefore, that Lph varies
among different models (different R} of different ages (different T,). The results are
shown in Tables 28-33 for our six models (Vﬁ I, VBH, VB Hi, VYI ’ VYII, and
VY“!) at different surface temperatures ranging from the highest value, 5 x 107 °K,

40

to the lowest value, 1 ~2x 10" “K, To visualize these values more clearly, let us

go back to Takle 25 in Section V=3, For a neutron star of radius about 10 km, it is
seen that the optical luminosity changes from about 10 times solar luminosity ot

T, =5x107

°K to obout 10773 times solar luminosity ot T, =2 x 104 °K, and that
a star as luminous as the sun has a surface temperature of about 1 to 2 million degrees

and an infernal temperature of about 108 ©K, A neutron star of R =5-6 km has

L 1050 L _at T, =5x 107k and L 1078 L) ar T, =2 10% Ok,



TABLE 28. Atmospheres of model (V;, I); M=0.939 M, R =4.333 km, A MA = 0,205, (Photon luminosity _.vr.

plasma neutrono luminosity Ly , corc temperature T, total energy U, moximum wave length with red shifts
Amaxe and cooling time T, as a function of Ty ,are listed. A WA s the red shift.)

_ Amas

Te log Lph logly ! log T (°K) log U (ergs) o log 7 (years)
(°K) (ergs/sec) | (ergs/scc) Fo Mg Fo Mg (A) Fe Mg
5 x 107 39.016¢ 44,86 9.9881 0.9787 49,3563 49.3375 0.75 -3.7 -3.3
2 x HOQ 37.4251 38.92 mo.homo 9.3068 48.1979 47.9937 1.88 (.89 1.38
1 x 107 | 36.2210 34.82 {9.0139 8.6724 47.4079 47.1249 3.75 3.4) 3.45
5 x Hom 35.0169 31.25 8.68406 8.4890 46.7493 46.3581 7.50 4,355 4,08
2 x 10% | 33.4251 - 8.1913 8.0773 45,7627 45.5347 18.75 5.14 4.67
1x Hom 32.2210 -~ 7.7127 7.6264 44,8043 44,6329 37.50 5.54 5.206
5 x Hom 31.0169 -— 2.7645 7.1736 43,9001 43.7273 74.96 5.655 5.71
2 x 10° 29.4252 - 6.5903 6.5542 42.5727 42.4885 187.5 6.424 6.092
1 x 10° 28.2211 - 6.1520 6.0937 41.6841 41.5675 375.0 6.727 6.404
5 x u_.oav 27.0170 - 5.6728 5.5649 40.7257 40,509¢ 749.6 6.954 6.701
2 x10% | 25.4252 | - 5.0349 - 39.4499 - 1875 |7.127 | 7.028
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TABLE 29. Model A<m~ 1); M =0.5992 Mg, R =5.658 km, A /A =0.156.
[<]

(Symbols are t

same as those in Table 28}

Te Log Lph log L, log T, °K) _ log ﬁ U{ergs}] Max | log T (years)

(°K)  l(ergs/sec) |(crgs/scc}| Fe Mg Fe Mg @A) Fe " Mg
5 x Ho.w 39.1538 | 47.23 |10.2516 | 10.4603 49,8191 50.2365 | 0.075 ~ =7 W ~ =0
2 x 167 | 37.5627 42.18 9.5976 9.5092 48.5111 | 48.3343 1.686 -1.306 m -0.395
1 x 107 | 36.3579 | 37.26 | 9.1803 9.06062 47.6765 | 47.4483 3.373 2.21 “ 3.101
5 x HO@ 35.1538 _ 33.49 8.8289 8.6510 46,737 46.6179 6.746 4.26 w 4.454
2 x Hom 33.5621 20.2 8.3778 8.2099 46,0715 | 45.7357 | 106.86 5.208 .m 5.024
1x Hoo 32.3580 | - 7.9293 7.8502 45,1745 { 45.0163 | 33.73 5.717 M 5.328
5 x 10° 31.1539 - 7.4726 7.3638 44,2611 | 44,0438 67.46 6.148 n 5.825
2 x 10° | 29.5621 -~ 6.7953 6.7608 42.9065 | 42.8375 | 168.6 6.604 6.298
1 x Hom 28.3580 - 6.3521 6.3056 42,0201 | 41.9271 | 337.3 6.871 6.589
5 x 104 27.1539 -~ 5.8850 5.7990 41.0859 | 40.9139 | 074.6 7.111 6.886
2 x 104 | 25.5622| 5.2634 - 39.8427 ~ 1686.2 | - 7.244
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TABLE 30. Model (Vg, Ill); M = 0.1926 My, R = 10,09 km, mwyl =0,0282,
(Symbols are the same as those used in Table 28.)

Te Log Lk Log _.i, Log T;in(°K) Log (U (ergs)] Amax , log \w\ (years)
CR) | (eray/eec)| (ergs/sec] Fy | Mg 2 o 1R e | Mg
2 x 1¢? | 38,0645 ' 45,31 {10.0223| 1c.0223 | 4°0.1514| 49.0134 | 1.50C | -4.27 | -3.89
1 x 107 | 36.8604 | 41.7¢ |e.s736 | 9.4813 48.254c | 47.9314 | 3.000 | -1.86 | -0.95
5 x 100 ! 35.6563 | 38.21 9.1570 | ©.0392 47.4208 | 47.0472 | 6.000 | 0.902 | 2.36
2 x 10% | 34.c04¢ | 33,75 18.7057 | 8.5109 46.5182 | 45.c00G | 15.00 | 4,553 | 4.4¢
1 x 10° | 32.€c05 | 30.01 |8.351C | 8.1939 45,8160 | 45.3566 | 30.00 | 5.656 | 5.061
5% 10° | 31.(504 | - 7.8000 | 7.8215 44.0048 | 44,6118 | GC.0C | G.281 | 5.5
2 x 10° uo.oﬁWD - 7.2057 | 7.2024 43.6982 | 43.3736G | 150.0 |6.744 | 6.4¢
1 x 105 | 28.8605 - 5. 7651 6.7355 42,6370 | 42.43¢8 300.0 |7.088 G.G55
5 x 104 | 27,6504 | - G.3248 | 6.278¢ 41.7564 | 41.5266 | ©600.04 |7.308 | 6.903
2x 104 | 2c.c647 | - 5, 7052 ~ 40.5172 - 15c0.1 | = | 7.326
1. x 10° | 24.8000 | - ~ 5.0936 — | 39.1560 ! 3000.3 | = | 7,508
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TABLE 31. Model (V4 I); M=1.9765 Mg, R = 9.636, A MA=0.301, (Symbols are
the same as those used in Table 28.)

Te fog Lok log _.E_ log Tiq CK; log U (ergs) . Mmax | log ¥ (years) “
°x) Am_.mm\wmnv (crgs/scc)f Fe Ng  Fe Mg | ) Tl....wMgsll
x 107] 3c,6208 | 45.75 |10.1C15 | 1C.1371 | 50.0446 | 50.115¢ | 0.750 | ~-5 | -5.25
x 107} 38.020C | 40.088 |0.4c09 | 9.3988 | 48.8414 Am.ommw 1.608 | -0.37 w 0.385
x 107} 3C.8247 37.24 o.OwWW £.000C 23,1122 47.7628 ¢ 3.7%4 2.%48 w 3.238
x 100! 35.¢208 | 33.38 |e.7528 | s.s025 | 47.3472 | 46.90CC | 7.501 | 4.338 | 4.03
x 100} 34.c20 ~ 24 £.276C g.13¢07 46,3930 4¢,1210 | 18.¢98 5.127 ! 4,72
x 10Y 32.824¢ - 7.8C77 7.7335 ‘ 4£,457C 45,3080 | 37.%4 5.50C 5.18
b's Hom“ 31.6208 - 7.362C 7.2024 44,5080 44,3C64 1V 75.€C ¢.CO01 . 5,004
x 103] 30.0261 - 6.62¢5 6.65C6 43.214C 43,1428 | 120.8 } 6.3€8 6.04¢8
x 105] 2e.8250 | - 6.2267 | 6.1e57 | 22.3350 | 42.233c | 379.4 | 6.774 | 6.348
ble Hoh 27.62C¢ - 5.772¢C 5.6727 41,3850 41,1c70 | 75¢.1 | C.cC€ 6.655 |
x 10%| 2c.cac1 | - 5.1453 - 40.1402 - 1898 | 7.156 | 6.95




3 TABLE 32. Model (Vy 1)y M = 1.1055 M,, R = 13,032 km; me = 0.125,
(Symbols are the same as those used in Table 28.)

Te log _.w_,_ logLy log Tin °K) log U (ergs) oyaox log T (years)

(°K) |(ergs/sec) (ergs/sec) Fo Mg Fe Mg (A) Fe Mg
5x107 | 39.6735 | 48.8281 10,5691 - 50.9876 - 0.6566 - ~5.4
2x107 | 33.2867 44,1172 9.7630 9.7118 | 49,3954 | 49.2820 1.641 -2.788 [=2.71
1x107 | 37.0326 40.0833 9.3435 9.2459 40.5564 | 48.3502 3.283 0,083 0.855
5x10° | 35.3785 36.0542 w 3.9645 8.8140 47,7384 | 47.4864 6.566 3.516 3.903
2x100 | 34,2367 31.7498 | 8.5378 8.3355 46,9363 | 46.57294 _ 16.41 5.001 4,808
1x106 | 33,0826 - 8.1317 8.0292 46,4228 | 45.9168| 32.33 5.898 5,431
5x10° | 31,6735 - 7.6528 7.5562 | 45.4650 | 44,9708 | 65.66 6.516 6.003
2x10° | 30,2368 - 7.0251 6:.9619 44,2096 | 43,7822 | 164.1 7.048 6.499
1x12° | 29,0827 - 6.5336 6.4923 | 43.2266 | 42.8430| 328.3 7.363 6.77
5x104 | 27,8786 - 6.0047 6,0201 _ 42,3288 | 41.8786 | 6556.6 7.698 7.083
2x104 | 26.2868 - 5.4511 - ﬁ 41,0616 - 1641.3 8,003 7.403
1x10% | 25.0827 - . 48043 | - 39.4670 [3283 - 7.63
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TABLE 3. hodel (V. IHI); M=0.2150 My, R = 24.154 km, m%,l = 0.0131.
(Symbois are the same as those used in Table 28)

Mw\ log _.vr log Ly log T;n (K) B flog U (ergs) Mmax| log T (years)
(°K) |(ergs/sec) |(ergs/sec) Fo Mg Fe Mg R) Fe Mg
2x107 | 38,8227 45.74 10,4103 - 50,4778 | - 1.478 | ~4.9 -4.46
1x107 | 37.6186 43.999 9.0275 | 9.7873 | 49.3111 | 49.2308! 2956 | -2.34 | -2.55
5x10° | 36.4145 42,03 9.4039 9.3018 | 40,4640 | 48.2598{ 5913 | -0.78 | -0.298
2x100 | 34,8227 36.81 8.8997 | 8.7365 | 47.4556 | 47,3292] 14.73 247 | 3.203
1x100 | 23.6136 23,69 8.52C0 8.3767 | 46.8162 | 46,4096| 29.56 5.098 H 5,29
5x10° | 32.4145 28.1 8.1365 8.0736 | 46,0292 | 45.3034| 59.13 6.3% | 5.958
2x1¢5 | 20,3228 - 7.5703 7.4637 | 44.7968 | 44.5836| 1470 | 7.14 6.601
1x10° | 29.6186 - 7.0965 7.0207 | 43.8492 | 43.6576| 295.6 7.561 7.078
5x10% | 28.4145 - 6.5901 6.5484 | 42,8364 | 42.7530| 591.3 7.948 | 7.441
2x10% | 26.8228 - 5,9904 - 41,6370 | - 1478.1 3.368 | 7.728
ix10% | - - - 5.4020 = | 40.4502{2956 | 7.82%
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Optical luminosity is plotted against internal energy for the model (2 Mg
Vy) in Figure 48 (the curves marked "Optical"). The solid curve corresponds to
an atmosphere of iron and the dashed curve to one of Mg. Similar curves have been
obtained for the rest of the models also. Such graphs are very useful in obtaining

the cooling curves, as seen in Section V-7,

b, Neutrino Luminosity

The universal Fermi interaction predicts that an electron could radiate a
neutrino pair as well as electromagnetic radiation.’2) Even though the probability
for the neutrino radiation is enormously small, it plays an extremely important role
in some stages of stellar evolution, because of the fact that the neutrino mean free
path is so large that it could escape even from a dense star with hardly any inter-
action, while electromagnetic radiation can only diffuse out very slowly from the
interior to the surface. In a very hot neutron star ( Tjn > 107 ©K}, the ceoling through
neutrino radiation is found o be much faster than that through electromagnetic

radiation, as seen in detail in Section V=7, Various different nevtrino processes

possible in a stellar interior have been proposed. These are,(73’74) assuming that
temperature is not too high (T < 1910 °K):

(i) Y-\- G"‘"’ @"'T )je + Ve (Photoneutrino process)

s —_ o t )+ )—)— . .

(if) Y+ Y‘_f e te e e (pair annihilation process)
(iii) Y (Plasmon) —> )}e + )}e (plasma process)

(iv) { e+ (%, A ) (2-7, A)j‘ Ve___ (URCA process) (5-49)
(2-1, A)=> (Z, A)+e™+ Ve
W e +(Z, A>T (LAt Ve+ iz (Bremsstrahlung)

(vi)Y+ Coulomb field - ))C + Ve (photonuclear process)

p—

(vii) Y+Y = Y,]. ))C -+ Ve (photon collisions)
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Depending on the particular density-temperature combination we encounter, some
of these dominate over others, but generally in astrophysics the first four (i-iv) are
more important than the last three (v=vii) . In relatively low temperature-density

8 °K, p < 10° gm/cm3) the photo neutrino process is dominant,

regions (T§5 x 10
in the high temperature and low density region (T > 107 °K, p < 107 gm/cm3) the

pair annihilation process dominates over the rest, while in high density-temperature
regions (p > 106 gm/cm3, T>38x 108 ®K) most of these processes are suppresseddue
to the paucity of empty electron states and usually only the plasma neutrino process
remains, The URCA process plays an important role only under special circumstances
such as during the dynamic collapsc of a star. In a diagram in reference 75, the
temperature~density plane is divided info several regions, inside each of which one

of the first three processes in (5-49) dominates. According to such diagrams (and

aiso from discussions given in refercnces such as 74) the plasma neutrino process is
expected fo be the most important mechanism in the cooling of hot neutron stars
(10103 T 2’109 °K, p > 106 gm/cms). Let us, therefore, look into this process in
somewhat more detail,

The neutrino-pair decay of a free photon is usually forbidden by the energy-
momentum conservaticn law (when w2§ k2), but inside an clectron gas, the electro-
magnetic radiation has a spectrum of the form

E (5-50)
and for 2 > k2, such waves, when quaniized, behave like relativistic particles

(called "plasmons") of rest mass b, each of which can decay into a pair. A similar

argument applies both to transverse and longitudinal plasmons. In (5-50), k is the
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wave vector and Wo called "plasma frequency," is given by
.2 2 3 £ (-F’) _1 P > ‘

where f(p) is the momentum distribution function for the electrons and

Y.
Ep= (Pt mE)” (&-52
For a degenerate Fermi gas, (5~51) reduces to
a3
wo”'-.-: 4-€ Pe / (317 EF) (5-51")

where pg is the Fermi momentum and Ep is the Fermi ensrgy
\
_ 2 2N%
E.= (PP +m3)
Noting that pg is related to density through
2 7 1/3 5-53
Pe= (31> Me ()] -3
we see that W, is fixed for a given por n,
The neuirino=pair emission rates per unit volume from transverse and longi-

tudinal plasmons are given in reference 74 as

-1 -2 Y bd . =
Q= 29> (3meY (am) Wy 2 {ge?‘? Cnpu) Rk (5-54)

")3 (5-55)

_ 1 e 2
= g e @MY oxp(w,p)~1 gm k=%

where g = 3.08 x 10712 mg is the weak coupling constant, ¢ is the electronic
charge and B =(kT)-1. (5-56)
It should be noted that throughout the above discussion the system of units where
c=% =1 haos been adopted. The above equations reduce to the following, simpler,

(74)

forms in c.g.s uniis:



353
QO o’ )= 2.96X10° ‘7 (i Fw <&T)
' I P IN  J (5-54")
= LIR30 € hekT)
) -1
Qq(e15t/bmiarc )= 315%10° Y (€™ 1)

(5-55"
V.
Fw, ‘ 2w, ~ 12 R 3
where x-% = wag > %:’ /ieu)(:zS 6. 63x)0 (ﬂeff/m 3):] s (5-57)

%:é’j—“‘z ::—r-a/— whtre "T%;T('OK')//D?
MeC 594

Q and Q¢ were calculated first, for various different values of electron number
density n_ and T, in the range of 1024 cm3 < ng < 1040 cm=3  ond 106K < T

< 4x 10190, When # e ~ kT, neither of the approximations in (5-54') apply.
Therefore, Q4 has been plotted against n, at each given T in each of the two
limits x<<1 and x> 1, and the intermediate region has been interpolated smoothly
by hand on the graph. Qg turns out to be negligible as compared with Q, through-
out the range considered. This result is shown in Figure 49. The number attached to
each curve is the corresponding temperature. The decay rate of plasmons at a given
temperature T increases with an increase in densiiy at first, but eventualiy it de-
creases when exiremely high densities are reached, as is to be expected (a maximum

at around p~ 4 x 1010 T. (for o™ 2))s We see from the above that the emissivity

is a function of density only for a given temperature. Therefore, in the isothermal
core aff neutron stars, Q is fixed at a given density (that is, ot a given radial
distance from the center), The total necutrino energy loss rate (or neuirino luminosity),

Ly s can thercfore be obtained by carrying out the following integration from the

center fo the surface of the star:
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R ; 3
Ly :goQ(f’/‘j‘f/Omwm)f{-’T}'C/Z(m)JoUz AL QT R (5-59)
In above calculations, Nys rather than F' has been used as a free parameter

to represent density, because in the process of converting n_ to p we must know the

e
exact composition of each layer in the star. It seems that the assumption
(A/Z) = 2 has customarily been employed in cther papers(74) for this purpose, This

assumption is correct for He4, 016’ etc., and is not a bad approximation for heavy

elements such as Fe56

« However, it is seriously wrong to make this assumption for
the neutron core and also for the outer layers where the composition changes very
sharply from loyer to layer. We have seen in Chapter |l how the mean value of A/Z
deviates from 2 in high density regions, The core integration program in Chapter IV
has been constiucied so that at cach r, the corresponding ng, p and other inter-
esting physical quantities, can be calculated. By slightly modifying the computer
program, the integration (5-58) can be carried out without trouble. That is, the input
table listing Q as a function of n, and T is first constructed from Figure 49, then
at each point r, the desired value of ! is computed from the input table just pre-
pared and the interpolation subroutine, and the 7094 computer is instructed to carry
out the integration (5-58) step-by-step. n, is fixed at a given r while T is
maintained constant throughout a star at a given age (note that the cutermost non=-
degencrate layers do not contribute to the integral), Neutrino luminosity L,

has been calculated in this manner for several interesting temperatures ranging
between 10'° °K and 107 °K for each of the six models of the Vlg or Vy type.

The result is shown in the third column of Tables 28-33, The values of L, when

L, << Lph (optical) are not shown. Inall cases Ly, is negligible as compared
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with Lph for Ti ]08 °K. Neutrino luminosity is plotied against total energy
content on a logarithmic scale for the model Vy, 2 M@) in Figure 48, Similar
graphs are plotted for five other models also.  The results are:

(i) At the highest temperature considered (10]0 ©K) neutrino luminosity is
about 108~ 7 times the optical luminosity, (iiYat T~ 5x 107 °K L, ~ 10° Lph’
(iii) at T~ 3 x 10° °k L y~ 103~ 4 times Lph’ (iv) optical and neutrino
luminosity become more or less comparable at slightly iess than a billion degrees,

(v) ncutrino luminosity becomes negligible as compared with the optical luminosity
for T<5x 108 OK, (vi) the deiailced properiies, however, depend on the different
types of model. For instance at the same internal temperature it appears that larger
neutrino luminosities are associated with the heavier models, and that for a given
weight and temperature the luminosities are, in general, greaier for Vy type models
than for VB type models (Tables 23-33), (vii) As the intcrnal temperature
decreases from about 1010 °K 4o 5 x 10° K, the neutrino luminosity goes down

45 ~ 47 o 1031 ~ 34

from about 10 ergs/sec, depending on the type of model,

(viii) For typical hot neutron stars of surface temperature about 2 x 107 ©K, neutrino

S 07 ~ 9 times the solar

7o

luminosity is about 103~ 3 fimes optical luminosity or about 1

luminosity. (ix) When the surface temperature goes down to about 10” °K, L, goes
down to about 103~ 4 Lo -

After the above calculations had been completed, the following improved

approximation formula for Q; due to Inmon and Ruderman('/é) became available:
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Q; =1. 2zsxlo22@“’ )F(x) where F(x) = > K (’M’Z

APEQL)=2 E(B+4 XYy X- ;(%M 1)1 4 Z*;"{"

! 1 _ B2 ,
“%(%2 4*1)/&1 2] ;(l))x ’ (5-58)

for X< 2T (x: %_Er )

here £ (3>->: L); £2)=5 Lz )T )=Eh 2
n=j /'/l

An input table listing F(x) as a function of x in the range 0,02 <x< 10 was
prepared from (5-58/), and Q; was calculated again in the same range of n, and
T as before; but this time with the equation (5-58’), the F(x) = x input table,and the
interpolation subroutine. Some of the results are shown in Figure 49 by the black
dots. The former graphic method using smooth hand interpolation in the intermediate
regions is found to be in excellent agreement with the new analytic expression
(5-58/), and it can therefore be concluded that further improvement of the results
aiready obtained should not be expecied through the use of the new formula (5-585,
in place of the old (5-54") iogether with the graphical interpolation method as wos
used previously,

Quite recenily, it was discovered that a modified "URCA process" in a

degenerate matter may give an important contribution to the neutrino luminosity of

neutron stars, Acco“dmg to qualitative estimates made by Chiu and Salr‘e?er(zz)
8 -2.25
554 F n \ (™M ergs/scc  (5-59)

Thls beccme known to me afner all my worl had been flmshed The plasma neutrino

luminosity estimated by the same authors(22) is
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1o 4‘ - 1
3,1, R, /M
L l)) Fl = 2X IO ( T /I U7°K> ( 6 I%)( /M@> ergs/sec (5-60)

According to these equations, for a typical neutron star with M =10, T=/0 °r‘<,
R =10 km and a neutron Fermi energy of 50 Mev, the URCA neutrino luminosity in
(5-59) and the plasma neutrino luminosity in (5-60) are both cqual to the value
2x 1036 ergs/sec. In this case the effect of the URCA process is not large (because
it increases the total neutrino luminosity only from 2 x 1036 to 4 x 1036 ergs/sec).
However, by examining my results it appears that the neutrino cooling rate at the
critical temperature around 109 °K might be greatly affected by the inclusion of the
URCA process. Because the URCA process plays an important role in the dynamic
collapse of a star, it should not be surprising if it also becomes important during the
subsequent cooling. It is desirable that a more detoiled formula for the neutrino
luminosity due to the URCA process should be derived and applied to my models, so

that its quantitative effect on the present results might be determined,

V-7 COCLING TIMES

The cooling time T is computed from the carefully prepared data of the last

sections and from the foliowing relation:

2
T=- g __L'{__"_(__ (5-61)
, L(uw)
where U is the total energy confent of a star, or the total internal energy, and
L(U) is the total luminesity (Lv +Lph) expressed as a function of U, as in Figure
48. If the above integraiion is carried out from the initial internal energy U; to

the final internal energy Ug, then gives the time interval during which the star

has cooled from a higher temperature Tj(where the total encrgy content is Uj) to a
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lower temperature Tp (where the total encrgy content is now Up). In the actual
computation, a graphical method has been used. For a small interval of time /44
in which the change of luminosity is small, At~ A U/L, where L is the mean
luminosity in this interval, The period of time between the moment the star started
to cool until a certain later time (the age or cooling time of the neutron star) is then
found by dividing this total period into small intervals and then by replacing the
integral of (5-61) by the sum over the small intervals. Then,
T=xz@uwrT) 61
For this purpose, graphs such as Figure 48, plotied for all six models, were used.

The results for each type of model (V‘3 n, (V!3 i), etc., are tabulated in the
last two columns of Tables 28 through 33 for model atmospheres of pure iron and pure
magnesium, respectively, The cooling curves are shown in Figures 50 through 53. The
detailed behavior of cooling is different for cach different type of mode! (each has
different internal nuclear physics, mass, density, radius and composition). But in
general the fotlowing conclusions can be drawn. (i) Until the surface temperaiure
drops to the range 1 miltion to 10 million degrees, the star cools off mainly by the
neufrino process. Below this point cooling preceeds mainly throvgh optical radiation
from the surface. (ii) The time scale is very short at high temperatures. For instonce,
the period of time during which the surface temperature is about 50 million degrees
and the internal temperature is from about 5 to 10 billion degrees lasts only from
about a second to a few hours at most even with only the plasma neutrino process of
cooling. At higher temperatures (say, Ty, ~ 10! ©K), other neuirino processes such

as those involving L neutrinos become important and the time scale is expected jo
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become much shorter (with a peak at around Tin ™ 10! oK, e ~ 6 x 101 gm/cms,
and T ~ 10-5 sec).(] 7) This result confirms our earlier assumption that all neutron
stars (of any kind) hotter than those with T~ Sx 107 o (that is, T~ ox 109 oK)
would cool off too fast to be observed, When the surface temperature becomes
about 2 x 107°K, the cooling rate is still quite high and the stars are from about 10
minutes to 20 years old, Stars with T, =1 x 167 °K are about 1 day to a few
thousand years old, and those with Te=5x 108 °K are about a few months to
20,000 years old. However, for cll the models considered (all the models possible),
it takes about 10° to 10° years to cool down to the point where T, =100 °k.
Hereafter, the difference in the cooling behavior between different types of model
is relatively small and after about 107 to 5 x 103 years from the time of its birth
(through a supernova exglosion), the surface temperature of all our models drops to
about 10 thousand years. Cox's opacity code broke down at temperatures lower
than about 104 °K  and therefore cooling beyond this point was not followed in this
research, However, it is expected that nothing interesting weuld happen at these low
temperatures. A neuiron star would most likely continue to cool down, asymptoti-
cally approaching zero-temperature. Therefore, the life times of neuiron stars are
expecied o be about 108 to 107 years. OF course, long before thet, they will
become tco faint ever to be detected. From the discussion in the next section, it is
impossible to detect neutron stars cooler than Te~ 10% °K and the life times of
detectabie neutron stars may therefore be tentatively set at from 105 to 106 years

60

(the time it would take o cool down to Ty~ 10”7 7 K),
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Figure 50 shows the cooling curves of our six models with iron atmospheres
(solid curves correspond to Vg type models and dashed curves to Vy type models).
The point at which the plasma cooling rate and the optical cooling rate become equal
Ly = Lph) is shown by a cross for each curve. The figure shows that for the same
type of model (cither V[3 or VY )r the lighter neutron stars have a lower surface
temperature than the heavier ones up to an age of about 10° years, but after that
heavier neutron stars cool off faster so that the total life times of the heavier stars
are somewhat shorter (about 107 ~ 108 years) than those of the ligher stars (‘.08~ 107
years)s Among models of the same mass and same surface temperature, Vy type
models are seen to be much younger than Vy type ones. A graph similar to the
ones for Foiatmospheres is shown fer Mg atmospheres in Figurc 51. This contains
the same notation as was previously used, and the general behavior is seen to be
also the same. In the discussion of this section, the moment at which a neutron star
is formed (or the moment of a supernova explosion) is defined as its time of birth
(the point from which its age is counted).

To see better the effects of different composition, cooling curves for the same
type of models of the same mass but of different composition arc shown in Figure 52.
Solid curves represent mode!s with iron atmospheres and doshed curves those with

Mg atmospheres. We see that for T, > 100 °©

K ,Fe models arc somewhat cooler at

a given age than the corresponding Mg models, but the reverse occurs when

Te < 'IO6 °K. Consequently, the total lifetimes of Mg models are somewhat shorter
than those of Fa models. This is explained as follows, For the hotter neutron stars

Tin 2 108~ 7 °K, Te 3106 ~7 ®K) which are cooling mainly by a neutrino

process, the age of the star is determined by the total internal energy U and the
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neutrino luminosity Ly, both of which depend on the internal temperature of

the star but which are independent of the atmospheric composition. Therefore,
neutron stars of the same internal temperature and other internal properties (mass,
nuclear forces, etc.) have the same age. However, neutron stars of the same internal
temperature have a higher surface temperature if the atmospheric compesition is

Mg instead of Fe because the opacity of Mg is generally smaller than that of Fe,

as can be seen in Figure 42. However, a cooler neutron star (Tin < 108 °K,

Te 5/106 °K) which is ccoling by optical radiation from the surface only is more
strongly governed by the surface composition, because now luminosity, and not only
Ter depends on the opacity of its atmosphere. The optical luminosity is larger for
Mg than for Fe (see Figure 48) at the same Ulor T;,) because of the lower opacity
associated with Mg. Therefore, if one compares the cooling time of two models,
identical in every respect except that one has an atmosphere of Mg while the other
has one of Fe, the cooling time of the former must necessarily be shorter than that
of the latter when the optical luminosity predominates. As a star cools down, this
effect of surface composition on luminosity (which shortens the cooling time of Mg
models as compered with that of fe models) eventually becomes more important than
its effect on surface temperature (which males the cooling time of Mg models longer
than that of Fe models), and finally 77 becomes shorter for the cooler stars with Mg
atmospheres than with Fe atmospheres. On comparing Figure 52 with Figures 50
and 51, however, we see that the cffect of different composition is rather small
compared with the effect of differont mass or of different nuclear potential in the

interior,
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The most important range of temperature from the point of view of one

trying to observe the star is 106 < To<2x 107 °K, as will be seen in the next
section. Therefore, this portion of the curves is enlarged in Figure 53. In this
critical range, the variation in the calculated age of a neutron star with different
nuclear potential is quite large. For instance at T = 107 ©K, a star of 1M, may
be only about a few years old if a nuclear potential of type Vy is assumed or it
could be as old as 2500 years if a Vp type potential is chosen. At a slightly lower
temperature, T, =5 x 10% ©K, models of 0,2 Mo (the lightest models) may be only
a few months old with Vy and about several years old with Vp . The variation
of age with mass is still more drastic, In the detectable range of surface temper-
ature shown in Figure 53, the possible age of a stable neutron star is seen to be

anywhere from about one day to about 100 years,

V-8 OBSERVATIONAL PROBLEMS -- DETECTABILITY

a. General Remarks

As mentioned at the beginning the main motive for sterting this research
was to see whether neutron stars, if they exist, would be detectable. Interesting
theorctical data have been accumulated to answer this question.

The conclusion is that (i) it appears practically impossible for earth-bound
astronomers to directly observe these stars even through the world's largest telescopes,
(if) some of the neutron stars should be detectable by x=ray telescopes mounted on
rockets or artificial satellites above the carth's ctmesphere, provided that Planck's

radiation formula is still applicable on the surface of such hat stars, but (iii) even
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above our atmosphere it is almost hopeless to detect these stars outside the narrow
range of wave lengths in the soft x-ray regions,

To explain the above conclusions, let us first go back to Table 25. If we
assume that neutron stars emit radiation as black bodies, the wave length A ax
giving the maximum intensity in the spectrum is simply given by

Aoy (em) =h€/(4.9651 k T, )= 0.2918/T ( °K) (5-62)

This shows that when T, ~ 10° 10 107 ©K, the maximum comes in the soft x~ray
region, 302 A max > 3,8, while this maximum shifts to the ultraviolet region when
T, falls to around 105 ~ 104 K,

The earth's atmosphere is transparent to radiation only in the regions
3000 R < X < 7000 & (visible), 8000 & < A< 12000 & (infrared), and 1 cm
N >\!\<‘ 10 meters (microwaves). Intersteilar matter consists mainly of hydrogen and
interstellar absorption is quite high near the lyman continuum (ultraviolet region)
but it is practically negligible outside of this range.

It is seen in Table 25 that the total optical luminosity of hot neutron stors
with T > 106 K (A max < 30 X) is comparable to or higher than the solar luminosity,
and thai ot T, ~ 107 OK, most of the encrgy output is concentrated in the x-ray
region around 3 X. Since interstellar gases are practically transparent to radiation
of these wave lengths, quite a large flux of x=rays from such a hot neuiron star should
be detectable jusi obove our atmosphere (here, for instance, L~ 103 LO for

70

Te~ 10”7 "K). Hewever, as was seen above, our atmosphere is opaque to x-rays and,

consequently, most of this high flux does not reach the earth’s surface, The fraction



369

of fhe radiation which passes through our atmospheric window is given by(”)

x’dx b Pl x o
.}781 1)/j (GX 1) where X:“K})/,&—Teandxzﬁfﬁg_:&%&)'

Then, when T~ 107 °K, only about 1078 of the total flux would

reach an earth-bound telescope. Although the total energy output of a star's surface
at this temperature is quite high (L ~ 10° L) its luminosity would appear to be
only 1072 Lo an observer on the ground and therefore too faint to be observed
~ unless the star is practically within the solar system.

Neutron stars hotter than this, Tin2 10]0 °K and Te 2,5 x 107 ©K, cool
off too fast to be observed (% < 10 hours) as seen in Section V=7 and they should be
excluded from our consideration.

6 ®1X are hard to detect even above the

Cooler neutron stars with T, < 10
earth's atmosphere. Neutron stars with 104 < Te < 100 ©K emit radiation with a
maximum intensity in the ultraviolet region where, as we saw above, the interstellar
absorption is quite high, Consequently, this poriion of the spcctrum will not reach
us. The fraction of radiation with longer wave lengths (to which interstellar gases
are almest transparent) is too small to produce an energy flux sufficient to be detected.
For instance, at T, = 5 x 105 OK, about 5 x 10” -5 of the total flux can reach us. At
this temperature the total luminosity of the star is akout 1072 Lgps and so we will
receive only L~ 5 x 1077 Loy whether we are above or below our aimosphere. That
is, the chance of our observing these cooler stars (104' <Tg< 108 °K) whose maximum
energy output is in the ultraviolet region is even less (both cbove and below our

atmosphere) than that of our observing from the surface of the carth the hotter neutron
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stars considered earlier, because of the strong interstellar absorption of radiation
in the ultraviolet range.,

Finally let us consider even colder neutron stars with Te§,104 %K. Here
the maximum of the Planck’s spectrum comes in visible region, but at these temper-
atures, the total luminosity of the star is less than 10-9 Lo worse from the siond-
point of being observable thon all the previous cases.

\'/e have exhausted, in the above, all possible ranges of temperature which a
neutron star can have and are led fo the three conclusions summarized at the beginn-
ing of this section. Combining the above considerctions with the results of the last
section (Figures 50 to 53), we sce that some of the neutron stars which emit x-rays
can surely last long encugh io allow us to observe them through rocket-bound
telescopes in outer space, provided that these stars can be treated as black bodies
and that their mass is not too small. (For instance, Figure 53 shows that a neutron
star of M~ 0.2Mgy and T_ ~ 107 °K can last only for a few days or less.)

It was recently suggested(zz) that a large fraction of the ultraviolet light
may be converted into visible light (Balmer recombination lines) if a neutron star is
surrounded by a gas cloud of density > 20 a%Oms/cm3, and that in such a case hot
neutron stars (T, ~ 107 °K) may be just barcly seen by terresirial telescopes.

\/hat is outlined above is further explored in detail in Section V=8¢, but
before that let us review the expcrimental background briefly,

b, x-ray Cbservations

Since it became possible to explore outer space through rocket=bound

instruments above the earth's atmosphere, the experimental evidence of x=-ray sources
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outside the solar system have been reporfed.(ls’w’ 20) From analyzing the results of
three flights, Giaconni's group(m) concluded that a strong x-ray source of temper-
ature about 8 million degrees is located near the galactic center. They maintained,
furthermore, that this source has an effective wave length of about 3 AO\, is not
associated with the earth's atmosphere nor with any members of the solar system,
and is not ascribable to any form of auroral activity, but is of galactic origin. Besides
this major source, two other much weaker x-ray sources were detected, one near the
Crab Nebula and the other somewhere between 20 and 30 hr righi ascension and
between + 10° and + 50° declination.

Friedman's group reported(zo) that two new x~-ray sources had been detected,
one in Scorpius and the other in the direction of the Crab Nebula. The sironger
source, in Scorpius, with an angular size less than 5° and with an energy flux of
1.4 x 1078 ergs/cm:2 -sec- A witha ncarly flat specirum in the wave length
range of 1.5 Ato8 /c\’, was located at 16 hr 15 min. right ascension and = 15
declination. The weaker source of flux 2,0 x 10~7 ergs/cmz-sec - R in the some
frequency interval as the former was found to coincide in its location with the Crab
Nebula to within 2°,

No optically prominent features arc known to be present of the location of
the Scorpius source, nor have any vnusua! stars,such as redio stars, been found there,
This is a region thickly populated with faint siars but with no vizible nebulosity,
On the contrary, the Crab Nebula is a well known source of visible and radio

synchrotron emission,
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Fisher(] 9 reported the results of his scanning of the night sky for possible
x-ray emissions, but no agreement is apparent between his results and those of other
groups. Friedman's group attributes this to the fact that the detectors used by
Fisher are about 13 times less sensitive than theirs, and argues that because of this
difference in instrumentation the two sources detected by Fricdman's group should be
insignificant compared with Fisher's background. The source near the galactic center
reported by Giaconni's group(ls) is most likely the Scorpius source reported by
Friedman's group.(zo) A slight discrepancy between the positions reported by these
two grofjpg/utf)t%e expected, considering the very broad field of view used by the former.

The latest x=ray measurement was made during the eclipse of the Crab Nebula
on July 7, 1964, It was reported(zo') that the size of the x-ray source in the Crab
Nebula as estimated from the change in flux during the eclipse is about 1 light year.
This eliminates the possibility that the blackbody radiation from a neutron star is the
major cause of the total measured x-ray flux from the Crab Ncbula, but does not
eliminate the possibility that therc is a neutron star in the Crab Nebula, as is shown

in the next section, V-8c,

c. Discussion

in the Oth column of Tables (28-33), the maximum wave lengths N naxt
corrected for gravitational red shifi, are listed, All other spectral shifts are negiigible
(for instance, the doppler width is only about 0,001 A),

Assuming that the interstellar absorption is negligible (which is a justifiable

approximation in x-ray regions) and that the total measured x-ray flux comes only

from a neutron star rediating as a blackbody, the distance d to the x-ray source
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(a neutron star) is easily cclculated through the relation
a=f L/(mm}% (5-63)
where L is the total optical luminosity of the star and F is the flux (ergs/cmz-sec)
of x-rays measured just above out atmosphere.

At the present stage, because of the paucity of experimental data it may be
dangerous to be too specific in numerical comparisons but | think that by comparing
some of the measured quantities with those predicted by the theoretical medels one
might gain some insight into the problem.

The apparent temperature of the Scorpius source (without the red=-shift) was
measured to be about 8 million degrees(mb} (Section V~8b). The real temperature
is easily found by blue shifting the observed value; that is, the actual surface
temperature To =(1 +9) 8 x 10° °K, where P =4 MN is the gravitational red
shift. For a known T, the corresponding age is found from a T~ ¢ curve such as
that shown in Figure 53, The resulis are listed in the table below. The distence
calcuiated from (5-63) with F =10~/ ergs/cmz-sec (approximately the measured flux
from the Scorpius source) is expressed in parsec (1 parsec =3.004 x 1018 cm =3,26

light years).

MODELS | (1 M@,vg)i(o,.éme,vﬁ);(o. 2M s Vol (2Mg, Vi) (1.1 Mo,vy)f (0.2M,,,V
=AM\ | 0285 | 0156 | 0022 | 0301 | 0125 | 0.013!
To(real) (°K) | 1.03x107] 9.25x106 {3.23x106 1.04x10/| 9.00x106 |8.12x100
AGEL l Fe | 2400 yrs| 300 yrs 10 days [12UC yrs | 27 yrs 5 days
Y | Mg | H00yrs| 1950 yrs | 1yr (1600 yrs | 26 yrs | 3 days
Distance(psc)| ~400 | ~450 | ~800  |~800 | ~900  |~1800
Mmax &) 3.6 3.45 5.3 3.65 | 3.4 3.25

Y
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Acccrding to this table, the maximum intensity comes at around 3.5 R, the possible
age can be anywhere from 3 days to 3000 years, and the corresponding distance from
about 2000 to 400 parsec. The wide range in age exists because of differences among
the stars being considered: differcnces in the nuclear and particle physics which govern
the interior, differences in the surface composition and most important, differences in
mass. The youngest model has M~ 0.2 M, R ~ 24 km, a Mg atmosphere and is of Vy
type, while the oldest (~ 3000 years) has M ~ Mys R~ 5§ km, a Mg atmosphere and is
of type Vﬁ .

The Scorpius source was used for the above calculations. Therefore, let us
look into this source in detail. There is no nebulosity, no visible or radio stars at the
location of this source, but a strong x-ray emission was detected, If future obser~
vations reveal that it is a point source, it is most likely that it is a neutron star. As
noted in Section V~8a, a neutron star, by itself (that is, in the absence of surrounding
gases or heavy nebulosity in its vicinity), cannot emit a deicctable amount of radiation
except in the form of x-rays {no visible, no radio synchroiron cmission). Among the
several possibilities presented in the above table the models (0.2 Mg, Vg ) (0.2 Mg,
VY) and (1.1 Mg, VY) should be climinated, because for any of these to be the
Scorpius source the corresponding supernova explosion should have occured less than
3G years ago, but no supernovae wiere observed in Scorpius within this century.

It may be interesting to compare the possible age of the Scorpius source
presented in the above table with some ancient records. Thé corresponding supernova
explosion could be a celestial event recorded in one of the following yeors:(23)

134 BC,, 436 AD., 327 AD., 891 AD, and 1535 AD. Some of these may, however, be



375

comets or ordinary novae. Some of these were seen not quite near the x-ray source,
but the accuracy of the location in ancient records is often doubtful and none of
these should ke eliminated as possibilitics.

The event in 827 AD. appears to be closest to the observed location of the
Scorpius source, It was noted by Humbolt (1850), that two Arabian astronomers,

Haly and Giofor Ben Mohammed Albumazar, observed a new star in Scorpius as bright
as "the moon in her quarters" which iasted for four months, but the date appears to be
no more certain than the first half of the ninth century. If this is the supernova ex~
plosion which formed a neutron star now emitting a strong x=ray flux in Scorpius,
then the age of the star should be about 1200 years, and from the above table the
heaviest model (2 My, V},) with an iron atmosphere is seen to agree best with the
observations, for which case the source is expected to be about 800 parsec away.

It is strange, however, that such a spectacular event should not be recorded
anywhere except in the Arabian records. It is at least not present in the Japanese
records, which were thoroughly searched, aithough its omission here may be due to
bad weather such as usually prevaiis in Japan at the time of ycar of the Arabian
observation. D. M. Duniop, afier cxamining the original Arabian sources, reporfed(él)
that it is not certain whether this new star observed by Arabs was a supernova or a
comet, The above table indicates, however, that it poses no trouble if it were a
comet or even if none of the possible supernovae considered above were the mother
of the neutron star candidate in Scorpius. For instance, if the ncutron star is cbout
1 M@, of the Vg type, and has a Mg atmosphere, the table shows that the mother

supernova should have occured at about 1,000 BC.,{and would be about 400 parsec
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away), which is long before any of the ancient supernova events considered above.
It is not surprising that no records of such an old event should be available. It should
also be noted that we may arrive at a model even older than any of those listed in
the preceding table if we use a different possible nuclear potential in the interior,
and that it is, therefore, quite possible that the event in question occured in pre=
historic times. It is also possible that the neutron star was formed through something
much less specutacular than a supernova cxplosion.

On examining the results shown in Tables 28-33 and Figures 50-53, we notice
the complexity involved in the problem. For instance, it seems improper to assign
a definite value to the number of neutron stars at a given temperature from just
simple statistics and a knowledge of the total number of supernovae in the universe,
even if all supernovae end up as neutron stars and even if we neglect all other
possible formation mechanisms of neutron stars, because, for instance, we do not
know how the remnants of supernova explosions are distributed among possible models
and also because the cooling rate depends drastically on the age and the internal
properties of the star, such as its moss, radius and the interaction potential present.
Consequently the time required for a neutron star to cool down to a given temperature
varies very much from model to model, For instance, if M~ 0.2 M, it takes only
a few days to cooi down to T =107 °K cfter the formation. But if M~ 0.6 M, and
a V.B type potential appiies, this cooling takes 3,000 years, while if the potential
is the V), type, the same star requires less than a year to cool down to the scme

temperature,
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It is, however, possible to make less restricted estimates. For instance, the

<A< 8 X) cannot

o
neutron stars detectable in the present frequency range (1.5 A & <

be among the lightest ones, because in order that the maximum radiation be in this

0 oK, but

frequency range the surface temperature T, must be 2 x 1072 Te Z 5x10
for such temperatures the lightest ncutron stars (~ 0.2 M@) cool too fast to be ob-
served. For instance, it takes for models of 0.2 Nb to cool down to 5 x 108 °K
(the lower limit in the preceding temperature range) and A~ 7R only a year
or less if the potential type is Vy and less than ten years if it is Vg - (See Figure 53
and Tables 28-33.)

Next, | should like to show that, uccording to my models, it is quite possible
that nothing would be detected at the location of a known ancient supernova,
were its remnant to be a neutron star of sufficiently small mass. As an example, let
us consider the Crab Nebulq, in which a supernova explosion is supposed to have
occured in 1054 AD. This is a sirong source of both visible and radio synchrotron
emission as well as a region of high nebulosity, which is belicved to be due fo the
existence of massive expanding shells expelied by the supernova explosion in
1054 AD. The size of the x=ray source in the Crab Nebula was reported to be about
one light year (Section V-8b), ard this indicaies that the major x-ray flux is related
to the hot gases in the outer expanding shells, However, this does not eliminate the
possibility that there exists a tiny dense ncutron star near the center of the Crab
Nebula. To visualize the situation, lct us tentatively assume that there is a neutron

star in the Crab Nebula and examine whether it should be detectable or not. lts

surface temperature at present (910 years after the explosion) is determined from the
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theoretical models. That is, the T, of various different models at T =910 years is
read from a T, - T curve such as that shown in Figure 53. From a given Ter the
corresponding A, (with red shifts) is determined from Tubles 20-33. The luminosity
of a star at a given T, has been calculated and plotted already in Section V-6a.
Inserting d = 1100 parsecs (our distance from the Crab Nevula) and variaus values of

L into equation (5-63) we calculate the total flux coming from the neuiron star only.
The properties of the hypothetical neutron star in the Crab Nebula( its surface temper=
ature Ty, maximum wave length A, internal  energy U, optical luminosity Lph’
and the flux F, to be measured just above our atmosphere which comes from the
neutron star only and not from the surrounding expanding she”s) are listed beiow, both

for models of F@ and Mg atmosphercs.

MODELS (1M, V) (0,6}-«/\0,Vp)i(O,ZMQ,VB)?(ZMe,VY) 1.1V, V) (0.2M,V.)
T.K) 1.23x107 1 8,1x10° | 2.9x100 | 9.33x100/5,63x100 | 1.68x108
Amax(R) ~3 |~ a2 ~d |~ ~20
log Ufergs) 47.65 | 47.45 146,92 | 43.06 |47.96 47.28
logLoh | Fel 3668 | 3578 |3475 | 3676 | 3621 34,41
(ergs/sec)l Mg 37.08 36.36 35,48 37.34 36.60 34.83
Fn Fe; 3.30x10°54.16x10°7 |3,28x1019) 3.98x10%1 1.12x1G°8 1 1,77x10710
(grs%s‘{)cmz’ Mg| 8.31x10°8! 1.65x1G°5) 2,07x1077 | 1.51x10° 2.75x10_8{4967x10'10

The above fable shows that if the neutron star has M2 0.6 M, for the V type and

M 2, 1 Mg for the VY

type, the maximum intensity comes within the range

3 A< Moax < 6 A and the x-ray flux is 1077 ~ 1078 ergs/cm2~sec which is com=~

parable with the flux measured in the Crab Nebula, But if its mass is about 1/4 to

o
1/5 solar mass the maximum intensity comes af around 10 < Xmax < 20 A, the surface
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tempcrature is only a few million degrees and the flux is reduced to about 107%10°10
ergs/cmg-sec which is too weak for detection. In the above calculations, the inter-
stellar absorption was neglected, but this may not be justified in this wave length
range. \/hen an oppropriate correction is applied the flux will become even less
than the values calculated above, The conclusion is that the neutron star in the
Crab Nebula, even if it exists, cannot be detected if its mass is sufficiently small,

It is also possible that a medium weight ncutron star exists near the center of the
Crab Nebula and emits x-rays of flux ~ 1078 ergs/cm2-sec but thet it cannot be
singled out because the expanding sheiis which surround the star also emit similar
x~rays, perhaps of somewhat greater intensity.

\/hile neutron stars cool toc fast to be observed at the critical stage where
3 x 10%< Te <3x 107°K, some of the medium-weight and heavy neutron stars
remain luminous for a long time. For instance, a 2 My neutron siar of type VY
about 400 parsec away and another of 1 M and type VB about 100 parsec away
both having T, =7 x 100 °K and Moax ™ SX would producc an output intensity of
1077 ergs/cm2-sec even as long os 10,000 years after their formation. Most of the
medium=-weight and heavy neutron stars last as long as 1076 years before they
become cooler than T, = 10° °k (Figures 50 and 51), It is remarkable that once we
get outside of our atmosphere, neutron stars much further away than any of the ob-
servable white dwarfs can be within reach of our detectors if they are massive and
hot enough, For instance, a massive, hot ncutron star . of the VY type with a mass

70

~ 2 M, radius ~ 10 km, Te~ 1~ 2x 10" K (7}@:’(3 Ao), when about 103 years old,

would, even if it were as far away as 2,000 to 3,900 parsecs, produce a flux of
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about 107° ergs/cmz-sec just above our atmosphere. With the sensitivity of the
present instruments, these stars arc only just barely detectable. But if the sensitivity

were increased by a factor of, say, 102, quite a few neutron stars might be "visible,"

V=9 CONCLUSION

V/hether a given neutron star is detectable or not depends largely on the
physical parameters involved, especially its mass. Among the x-ray sources which
have already been discovered and those which will be discovered in the future, it
is quite possible that some are not ncutron siars, while it is also possible that some
others are indeed neuiron siars, \Ye have scen that while it would be difficult to
detect light necutron stars, some of average-weight and massive neutron stars should
last long enough to permit their observation.

Should future observations reveal that none of the celestial x-ray sources
are neutron stars, this could indicate that the ordinary Planck's radiation formulae
are not applicable on the surface of neuiron stars because of the extraordinarily high
temperatures which obtain there; or it may be that some of the other fundamental
assumptions made in this research are wrong, For instance, a neutron star may not
be formed through a supernova cxplosion, or perhaps in such cxiremely dense matter
some peculiar phenomena occur which cannot be explained by the present theories
of general relativity and high energy physics. On the other hand, for the very same
reason, neutron star probiems would provide strong support for some of the existing
theories of the lastest stages of stellar evolution, particle physics and general re-

lativity upon which this research is based, should the results of research on neutron
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stars such as presented here turn out to agree well with futurc observations. If such
agreement is not found, the discrepancies may provide us with clues to some of the
puzzles which today exist in the fundemental physical theory.

In any case, improvements in the techniques of detection are quite badly
needed. Some possible improvements in x~ray measurement which would help us
to distinguish between neutron stars and other x-ray sources and to better understand
the properties of neutron stars are: (i) the selecfion of a different wave length range,
especially on the shorter wave length side of the peck. For instance, by chocsing
A < 1R for the Scorpius source with the peak at Mnax ™~ 3 R, we should be able
to sece a ron-flat spectrum (due to a sharp drop of intensity in blackbody spectrum
on the shorter wave length side) if the radiation comes from a neutron star; (ii) with
sufficiently high sensitivity the intensity discontinuity at K (and L) shell absorption
edges might be detected; (iii) by increasing the angular resolution of the instrument
one could determine whether the source is a point source or an extended one. A
neutron star should be a point source. The position of the absorption edge is a
characteristic of the surface composition (for instance, the K-shell absorption comes
at 1.3 X for Fe and af 6.3 X for Mg). The shift of the observed position from the
expected position is then practically due fo the gravitational red shift, which is
proportioncl to M/R. The red shift measurement is very useful, because it gives both
the surface composition and the ratio of mass to radius, which can be compared with
the prediction of the theoretical models, Reside the above considerations, if some
of the x-ray sources are identificd with neutron siars, the distance, the age and cool-

ing rate of the star can be calculated by a suitable combination of theoretical and
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experimental data(especially the measured flux). If, further, the source could be
associated with a known supernova explosion of known time and distance, we would
have more physical parcineters to compare our theoretical models with. In this way,
it would be possible to select a few models (or a unique model) from a number of
various possible models. One of these methods alone may not be very significant but
when as many as possible are used in a suitable combination, the problem of neutron
stars may in the future provide a powerful tocl for studying some of the fundamental
theories in physics and asironomy.

Some possible refinements on the present work might be (a) the development
of a better theory of interaction forces between sub~atomic particles, especially at
the critical region of 1014 gm/crnsh(' fc ilOlé"s gm/cn13, (b) the application of
degencrate compton scattering to opacity in the high density, high temperature region,
(c) the derivation of an accurate URCA ncutrino luminosity formula (and similar
formulae for any other neutrino processes of appreciable importance if any) which
could be applied for the cooiing of neutron stars and might indicate some appreciable
change in the cooling behavior at the critical point around T ~ 109 °K (the corres-

ponding T, ~ 10%- 107 ©

K), (d) the derivation of an internal energy expression which
includes the potential and not only the kinetic term, the application of which may
change my final results for total energy content of a neutron star by a factor of
about 2, (e) more quantitative work on the diffusion problem, (f) similarly for the
convection problem, (g) the inclusion of a degree of partial ionization on the

equation of state in atmospheres (this was taken into account in the opacity calcu=-

lations but in the equation of statc it was simply assumed that all electrons are
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ionized which is a justifiable approximation for the hot models but perhaps not for
the cooler ones, and (h) the investigation of cooling behavior at the coldest limit
Te < 104°K ., Most of the improvements suggested above are not necessary at the
present stage, because the paucity of observational data does not permit their validity
to be checked. However, the first four of the above refinements may produce ap~
preciable changes in the final results of this dissertation.

It should be emphasized that models at the two different possible extremes
of neuclear potential and atmospheric composition have been developed in paralle!
in this research in order to avoid as far as possible the danger of drawing conclusions
from too limited models. The main approach taken was, therefore, to set upper and
lower limits, which are consistent wiih physical principles, to the possible models.
It seems most likely that an actual neutron star should be represented by a model

intermediate between the iwo exiremes.



APPENDIX 1

In a Grand Canonical ensemb;Ae,{ theeC)Brand partition function Z
- /T (KN-CJ /T
Z=z¢e 5 ZP:; e

= - /f,og_z

pchemical potential, N = total number of the particle, n=number density.

For fermions and bosons,
(U- € )/
0= =" log (1+ X, jwith Xp = € =he
L
where “,z is defined by

| M/
’TEe./

Then from (A1-2) and (A1-3)

NV = 252 O M _ Z CIOA

~ €/

384

. (50)

(Al-1)

(A1-2)

(A1-3)

(Al1-4)

(A1=5)

(A1-6)

(A1-7)

Consider an assembly of nuclear matter consisting of nuclei (A, Z), free protons P

and free neutrons N in equilibrium, with respective number density ng for the

A/Z), n
ph sicq!p

nuclei

for free protons and n, for free neutrons. Using subscripts

s, pr 0 foy/quantities of the nucleus (A, Z),proton and neutron respectively, the

above statistical equilibrium condition applying to each become:
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__ L 500
’Yls Vil Bew
TP,
n, 50, ~
44 F': - "\’7 ’%E (99 N ) (A1-8)
P /v,
_ [ 'z n (’9 £ n \
" V /f 4 77\ /\/, T
because all are in a common box of volume V at the same temperature = kT in
equilibrium, with the additional condition
25, N
/Z - }2 5 jz S exp (Q/kT) where Q is the (A1-9)
S N

binding energy of the nucleus s, namely,

dyz-c*(M-MzZ - M,N) (A1-10)
where ! 5 Mp, M,, are masses of the nucleus (A,Z), proton and neutron. At this
point two approximations are necessary: (1) to a first approximation the energy of
the excited states is neglected, and (2) the assumption of a perfect gas is employed,
which is justified for heavy nuclei, protons and neutrons in the whole density range
to be used in this section, namely for /D < 10” gm/cm3.

For a perfect gas, it is well known that {p. 65 reference 50)

a=-tve? C\//X} -’T’( (A1-11)

where

A= R (27 MAT) (A1-12
so that
/n_

3 for each constituent particle,

>\/fc T

Namely, /yl ws‘__ )/n = (0

i(.
UA y
N = Wy = (A1-13)
As PXE ) A
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where the partition function including the spin orientation is expressed as
W = Z‘ (Q-j; +1) @(P( - €& /T)over all levels i.
From (A1-9) and (Al 13), we get

[u} }l‘:s s G’XF( Qs/“ffT)j/)\z

(A1-14)

- U t /\y > l’lm>\3 l/)(/o(@,;/k'r) I

For protons and neutrons v =2 nohng I=1% for both, with no excited siates.

- ., L
Also noting )\ P: 'h/( Q"’ﬁM’kT? :)\m ) /\5:: é/l 2 A M ”f’CT) 2

(where M = the atomic mass unit), (A1-15) reduces to

3(A-17
NAZ2)= EU—LA}) N A ( el L e/xt)(Q(A z)/f‘a') (A1-16)
24 M k—T //

where n Q, and w, are re-expressed as n(A,Z), Q(A,Z), and (A,Z), and the

relations N + Zs = A, ¥ =kT, A= h/2T are used. «(A,Z) is the same form as

(A1=14). Subscripts s are dropped,
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APPENDIX 2

M was defined as U(R), the solution of (1-8) and (1-9). From (1-8)

R _—
M: M(R): 5 /("ﬁ'g ( P)/’Z AT (A2-1)
From (1-45) 0"?{(]'37)’
M= f 4, J=%an (1) dT (A2-2)

From (1-46), (I- 45) and (1-8),
My = (R4 oy = (fnee,, - grnrEdn
= MP— M

From (4~7)

az Mg /M o=
ay was defined as (4-2),
a=aM; /(N H)= (NN - M>/{N’Wl,,,): 1= Mﬂme)Az-s)
N was defined as (1-44)

N= %WTS 6’ TV N(n)n* 4t (A2-6)

Thercfore

NK 44‘5 /f—-——(—fmz)/”(’w M T

(A2-3)

1- M (A2-4)
Me

(A2-7)
Note that m., Proton mass, is a constant. In Section I-4b of Chapter |, Q'.‘m was
defined as

= Z MMy (A2-8)

where the sum is taken over all haryons present £, My s the massand np is

the number density of the £ th baryon,
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If we have neutrons only Pm =n myf the proton neutron mass difference is
neglecfed) «Then (A2-R7) becomes
Nm, = 4 So J——_g;—ﬂ:(nws ﬁm/Z?M = Mf’
from (A2-2) and (A2-5) reduces to
o= 1- M/MP:— ol
while this is not true for mixiures where Pm = % ny iv‘.k-;‘ea'é myn and hence

N my/ MP. In the above, n is the baryon number density and N is the total

baryon number of the siar.
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APPENDIX 3
From the definition of the mean density _é ' % g {) R we have the
relation
{where M is the mass and R the radius of
e o — a white dwarf) (A3-1)

K 3

The average gravitational force within a white dwarf is
M 2
Fze @My o MU
nz R.°

The pressure P of the degenerate electron gas which supports the star has, from

(A3-2)

Eq. (3-4a) and (3-4b), the following dependence on \p , and hence M and R (from

above relation),

/3
5/3
POC? < i\ég (non=relativistic) (A3-3)
43 M
o< o — L
RI-{— (relativistic) (A3-4)
Therefore, M >3
~O{7'L -FZ_C (non=relativistic) (A3-5)
473
"a/'{ "F‘{—S’ (relativistic) (A3-06)
\
To satisfy the hydrostatic equilibrium condition dP_ . ——G—'Y,-— ; (A3-2) and
r re
(A3-5) or {A3-6) must be equated. Then we obtain

M / -
- = const —— - M]’3=consr R L (non-~relativistic) (A3-7)
R¢ R®

4 2
M3 M 2/3
— =const —— - M =const (relativistic) (A3-8)

R R®

while
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That is, for a non-relativistic electron gas, there is only one fixed value of R

that a star of a given mass can have and still be a stable star. If the degenerate
gas is relativistic, there is no fixed value of R for a given mass because the R's
on the different sides of Eq. (A3~3) cancel each other, and there is no equilibrium

configuration in this case,
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